Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition

被引:38
作者
Gao, Zhongke [1 ,2 ]
Li, Rumei [1 ]
Ma, Chao [1 ]
Rui, Linge [1 ]
Sun, Xinlin [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Efficient Utilizat Low & Medium Grade Ene, Minist Educ, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain network; convolutional neural network (CNN); differential entropy (DE); electroencephalogram (EEG) signals; emotion recognition; Spearman correlation coefficient; EEG; CLASSIFICATION;
D O I
10.1109/TIM.2021.3090164
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time-frequency representation (TFR) of electroencephalogram (EEG) signals on each channel and extract rich information from different frequency bands for subsequent analysis. Brain networks are then constructed in multiple bands to characterize the spatial connections hidden in the multichannel EEG signals. Based on brain networks, we further develop core brain networks through a set of key nodes determined by DE. These core brain networks are associated with brain activities and differ markedly between different emotional states. The final designed MCNN model takes DE features and core brain networks as inputs for emotion recognition. We evaluate our method on the SITU emotion EEG dataset, and the average accuracy of 15 subjects achieves 91.45%. Utilizing the complementary features of DE and brain network, the proposed method provides an efficient framework for accurate emotion recognition from EEG signals.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Emotions Recognition Using EEG Signals: A Survey [J].
Alarcao, Soraia M. ;
Fonseca, Manuel J. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (03) :374-393
[2]   A real-time automated system for the recognition of human facial expressions [J].
Anderson, K ;
McOwan, PW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (01) :96-105
[3]   EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach [J].
Asghar, Muhammad Adeel ;
Khan, Muhammad Jamil ;
Fawad ;
Amin, Yasar ;
Rizwan, Muhammad ;
Rahman, MuhibUr ;
Badnava, Salman ;
Mirjavadi, Seyed Sajad .
SENSORS, 2019, 19 (23)
[4]   A novel approach for automated detection of focal EEG signals using empirical wavelet transform [J].
Bhattacharyya, Abhijit ;
Sharma, Manish ;
Pachori, Ram Bilas ;
Sircar, Pradip ;
Acharya, U. Rajendra .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (08) :47-57
[5]   Brain-computer interfaces: communication and restoration of movement in paralysis [J].
Birbaumer, Niels ;
Cohen, Leonardo G. .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 579 (03) :621-636
[6]   Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures [J].
Bonita, J. D. ;
Ambolode, L. C. C., II ;
Rosenberg, B. M. ;
Cellucci, C. J. ;
Watanabe, T. A. A. ;
Rapp, P. E. ;
Albano, A. M. .
COGNITIVE NEURODYNAMICS, 2014, 8 (01) :1-15
[7]   Rhythm-Dependent Multilayer Brain Network for the Detection of Driving Fatigue [J].
Dang, Weidong ;
Gao, Zhongke ;
Lv, Dongmei ;
Sun, Xinlin ;
Cheng, Chichao .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) :693-700
[8]  
Duan RN, 2013, I IEEE EMBS C NEUR E, P81, DOI 10.1109/NER.2013.6695876
[9]   Wavelet Multiresolution Complex Network for Analyzing Multivariate Nonlinear Time Series [J].
Gao, Zhong-Ke ;
Li, Shan ;
Dang, Wei-Dong ;
Yang, Yu-Xuan ;
Do, Younghae ;
Grebogi, Celso .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08)
[10]   A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition [J].
Gao, Zhongke ;
Li, Yanli ;
Yang, Yuxuan ;
Dong, Na ;
Yang, Xiong ;
Grebogi, Celso .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (11) :7159-7167