Global synchronization of dynamical networks with coupling time delays

被引:10
作者
Liu, Bin [1 ]
Teo, Kok Lay
Liu, Xinzhi
机构
[1] Hunan Univ Technol, Dept Informat & Comp Sci, Zhuzhou 412008, Hunan, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6001, Australia
[4] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
global synchronization; dynamical network; network coupling; Lyapunov-Krasovskii function; time delay; linear matrix inequality (LMI);
D O I
10.1016/j.physleta.2007.03.091
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we aim to study global synchronization for dynamical network with multicoupling time delays. By utilizing the Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs), we derive some simple and efficient criteria in terms of LMIs for achieving global synchronization. Feedback controllers can be easily obtained by solving the derived LMIs. These feedback controllers can achieve global synchronization of the a closed-loop dynamical network with coupling time delays. Two examples and numerical simulations are solved so as to illustrate the results obtained. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 28 条
[1]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[2]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[3]   ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS [J].
CHEN, GR ;
DONG, XN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09) :591-601
[4]   Global synchronization of coupled delayed neural networks and applications to chaotic CNN models [J].
Chen, GR ;
Zhou, J ;
Liu, ZR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07) :2229-2240
[5]  
Grade P. M., 2000, PHYS REV E, V62, P6409
[6]   Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal [J].
Grassi, G ;
Mascolo, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :1011-1014
[7]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[8]   Spectral properties and synchronization in coupled map lattices [J].
Jost, J ;
Joy, MP .
PHYSICAL REVIEW E, 2002, 65 (01)
[9]   Applications of chaos in modern communication systems - Introduction [J].
Kocarev, L ;
Maggio, GM ;
Ogorzalek, M ;
Pecora, L ;
Yao, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (12) :1385-1388
[10]   GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION [J].
KOCAREV, L ;
PARLITZ, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (25) :5028-5031