Deep-learning-based quantum vortex detection in atomic Bose-Einstein condensates

被引:21
作者
Metz, Friederike [1 ]
Polo, Juan [1 ]
Weber, Natalya [1 ]
Busch, Thomas [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Quantum Syst Unit, 1919-1 Tancha, Onna, Okinawa 9040495, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
关键词
machine learning; object detection; convolutional neural network; vortices; Bose-Einstein condensate; non-equilibrium dynamics; Gross-Pitaevskii equation; TURBULENCE; VORTICES; DYNAMICS;
D O I
10.1088/2632-2153/abea6a
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum vortices naturally emerge in rotating Bose-Einstein condensates (BECs) and, similarly to their classical counterparts, allow the study of a range of interesting out-of-equilibrium phenomena, such as turbulence and chaos. However, the study of such phenomena requires the determination of the precise location of each vortex within a BEC, which becomes challenging when either only the density of the condensate is available or sources of noise are present, as is typically the case in experimental settings. Here, we introduce a machine-learning-based vortex detector motivated by state-of-the-art object detection methods that can accurately locate vortices in simulated BEC density images. Our model allows for robust and real-time detection in noisy and non-equilibrium configurations. Furthermore, the network can distinguish between vortices and anti-vortices if the phase profile of the condensate is also available. We anticipate that our vortex detector will be advantageous for both experimental and theoretical studies of the static and dynamic properties of vortex configurations in BECs.
引用
收藏
页数:16
相关论文
共 71 条
  • [21] Giant vortex clusters in a two-dimensional quantum fluid
    Gauthier, Guillaume
    Reeves, Matthew T.
    Yu, Xiaoquan
    Bradley, Ashton S.
    Baker, Mark A.
    Bell, Thomas A.
    Rubinsztein-Dunlop, Halina
    Davis, Matthew J.
    Neely, Tyler W.
    [J]. SCIENCE, 2019, 364 (6447) : 1264 - +
  • [22] Decaying quantum turbulence in a two-dimensional Bose-Einstein condensate at finite temperature
    Groszek, Andrew J.
    Davis, Matthew J.
    Simula, Tapio P.
    [J]. SCIPOST PHYSICS, 2020, 8 (03):
  • [23] Guo S., 2021, ARXIV 210105404
  • [24] Driving Bose-Einstein-Condensate vorticity with a rotating normal cloud
    Haljan, PC
    Coddington, I
    Engels, P
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (21) : 210403 - 1
  • [25] Hofer LR., 2020, ARXIV 201110536
  • [26] Innes M., 2018, J OPEN SOURCE SOFTW, V3, P602
  • [27] Observation of vortex phase singularities in Bose-Einstein condensates -: art. no. 080402
    Inouye, S
    Gupta, S
    Rosenband, T
    Chikkatur, AP
    Görlitz, A
    Gustavson, TL
    Leanhardt, AE
    Pritchard, DE
    Ketterle, W
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (08) : 804021 - 804024
  • [28] Finite-temperature vortex dynamics in Bose-Einstein condensates
    Jackson, B.
    Proukakis, N. P.
    Barenghi, C. F.
    Zaremba, E.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05)
  • [29] Symbolic calculation in development of algorithms: split-step methods for the Gross-Pitaevskii equation
    Javanainen, J
    Ruostekoski, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (12): : L179 - L184
  • [30] Evolution of large-scale flow from turbulence in a two-dimensional superfluid
    Johnstone, Shaun P.
    Groszek, Andrew J.
    Starkey, Philip T.
    Billington, Christopher J.
    Simula, Tapio P.
    Helmerson, Kristian
    [J]. SCIENCE, 2019, 364 (6447) : 1267 - +