Deep-learning-based quantum vortex detection in atomic Bose-Einstein condensates

被引:21
作者
Metz, Friederike [1 ]
Polo, Juan [1 ]
Weber, Natalya [1 ]
Busch, Thomas [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Quantum Syst Unit, 1919-1 Tancha, Onna, Okinawa 9040495, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
关键词
machine learning; object detection; convolutional neural network; vortices; Bose-Einstein condensate; non-equilibrium dynamics; Gross-Pitaevskii equation; TURBULENCE; VORTICES; DYNAMICS;
D O I
10.1088/2632-2153/abea6a
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum vortices naturally emerge in rotating Bose-Einstein condensates (BECs) and, similarly to their classical counterparts, allow the study of a range of interesting out-of-equilibrium phenomena, such as turbulence and chaos. However, the study of such phenomena requires the determination of the precise location of each vortex within a BEC, which becomes challenging when either only the density of the condensate is available or sources of noise are present, as is typically the case in experimental settings. Here, we introduce a machine-learning-based vortex detector motivated by state-of-the-art object detection methods that can accurately locate vortices in simulated BEC density images. Our model allows for robust and real-time detection in noisy and non-equilibrium configurations. Furthermore, the network can distinguish between vortices and anti-vortices if the phase profile of the condensate is also available. We anticipate that our vortex detector will be advantageous for both experimental and theoretical studies of the static and dynamic properties of vortex configurations in BECs.
引用
收藏
页数:16
相关论文
共 71 条
  • [1] Observation of vortex lattices in Bose-Einstein condensates
    Abo-Shaeer, JR
    Raman, C
    Vogels, JM
    Ketterle, W
    [J]. SCIENCE, 2001, 292 (5516) : 476 - 479
  • [2] Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime
    Aftalion, A
    Du, Q
    [J]. PHYSICAL REVIEW A, 2001, 64 (06): : 1 - 11
  • [3] Quantized rotation of atoms from photons with orbital angular momentum
    Andersen, M. F.
    Ryu, C.
    Clade, Pierre
    Natarajan, Vasant
    Vaziri, A.
    Helmerson, K.
    Phillips, W. D.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (17)
  • [4] Watching dark solitons decay into vortex rings in a Bose-Einstein condensate
    Anderson, BP
    Haljan, PC
    Regal, CA
    Feder, DL
    Collins, LA
    Clark, CW
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 2926 - 2929
  • [5] A Streampath-Based RCNN Approach to Ocean Eddy Detection
    Bai, Xue
    Wang, Changbo
    Li, Chenhui
    [J]. IEEE ACCESS, 2019, 7 : 106336 - 106345
  • [6] Creation of optical speckle by randomizing a vortex-lattice
    Balbuena Ortega, A.
    Bucio-Pacheco, S.
    Lopez-Huidobro, S.
    Perez-Garcia, L.
    Poveda-Cuevas, F. J.
    Seman, J. A.
    Arzola, A. V.
    Volke-Sepulveda, K.
    [J]. OPTICS EXPRESS, 2019, 27 (04) : 4105 - 4115
  • [7] Applying machine learning optimization methods to the production of a quantum gas
    Barker, A. J.
    Style, H.
    Luksch, K.
    Sunami, S.
    Garrick, D.
    Hill, F.
    Foot, C. J.
    Bentine, E.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [8] Machine learning vortices at the Kosterlitz-Thouless transition
    Beach, Matthew J. S.
    Golubeva, Anna
    Melko, Roger G.
    [J]. PHYSICAL REVIEW B, 2018, 97 (04)
  • [9] Brunelli R., 2009, Template Matching Techniques in Computer Vision: Theory and Practice
  • [10] Machine learning for quantum matter
    Carrasquilla, Juan
    [J]. ADVANCES IN PHYSICS-X, 2020, 5 (01):