A characterization of horizontal visibility graphs and combinatorics on words

被引:69
作者
Gutin, Gregory [2 ]
Mansour, Toufik
Severini, Simone [1 ,3 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Univ London, Dept Comp Sci, London WC1E 7HU, England
[3] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
关键词
Networks; Time series; OUTERPLANAR;
D O I
10.1016/j.physa.2011.02.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Horizontal Visibility Graph (HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos Luque et al. [B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for random time series, Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if it is outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics Flajolet and Noy [P. Flajolet, M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique, we determine asymptotically the average number of edges of HVGs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2421 / 2428
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 74E44 EINDH U TECHN
[2]  
[Anonymous], THESIS MCGILL U
[3]  
de Berg Mark, 2000, Computational Geometry, Vsecond, DOI DOI 10.1007/978-3-662-03427-9
[4]   Analytic combinatorics of non-crossing configurations [J].
Flajolet, P ;
Noy, M .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :203-229
[5]   AN EXACT ALGORITHM FOR SINGLE-LAYER WIRE LENGTH MINIMIZATION [J].
HO, JM ;
SUZUKI, A ;
SARRAFZADEH, M .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1993, 12 (01) :175-180
[6]   The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion [J].
Lacasa, L. ;
Luque, B. ;
Luque, J. ;
Nuno, J. C. .
EPL, 2009, 86 (03)
[7]   From time series to complex networks:: The visibility graph [J].
Lacasa, Lucas ;
Luque, Bartolo ;
Ballesteros, Fernando ;
Luque, Jordi ;
Nuno, Juan Carlos .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :4972-4975
[8]   Description of stochastic and chaotic series using visibility graphs [J].
Lacasa, Lucas ;
Toral, Raul .
PHYSICAL REVIEW E, 2010, 82 (03)
[9]   SUBGRAPH ISOMORPHISM FOR BICONNECTED OUTERPLANAR GRAPHS IN CUBIC TIME [J].
LINGAS, A .
THEORETICAL COMPUTER SCIENCE, 1989, 63 (03) :295-302
[10]   Horizontal visibility graphs: Exact results for random time series [J].
Luque, B. ;
Lacasa, L. ;
Ballesteros, F. ;
Luque, J. .
PHYSICAL REVIEW E, 2009, 80 (04)