Independently tunable infrared absorber using stacked molybdenum disulfide metasurfaces

被引:20
作者
Ge, Jiahao [1 ,2 ]
Zhang, Yaqiang [1 ,2 ,3 ]
Dong, Hongxing [1 ,3 ,4 ]
Zhang, Long [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[4] CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Metasurfaces; Molybdenum disulfide; Perfect absorber; Interference theory; BROAD-BAND ABSORPTION; PERFECT ABSORBER; METAMATERIAL ABSORBERS; GRAPHENE METAMATERIAL; HYBRIDIZATION;
D O I
10.1016/j.apsusc.2021.151594
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we present an independently tunable infrared tri-band perfect absorber, which consists of double-layer stacked molybdenum disulfide (MoS2) metasurfaces and a gold mirror separated by insulating layers. The light absorption in monolayer MoS2 is strongly enhanced, and three absorption peaks of over 99.5% are ach-ieved. We demonstrate that the three absorption peaks can be independently tuned by changing the carrier density of the corresponding MoS2 layer, indicating no interlayer coupling between the top and bottom MoS2 layers. Based on this, we propose a multilayered multiple interference model to elucidate the independently tunable perfect absorption mechanism. The theoretically calculated absorption spectrum agrees excellently with the simulated spectrum. In addition, the tri-band perfect absorber possesses polarization-independent and incident-angle-insensitive properties. The proposed metasurfaces may help in designing multilayered metasur-face absorbers and thus the fabrication of MoS2-based optoelectronic devices such as modulators, tunable sensors, thermal emitters, and photodetectors for infrared waves.
引用
收藏
页数:8
相关论文
共 43 条
[1]   A perfect absorber made of a graphene micro-ribbon metamaterial [J].
Alaee, Rasoul ;
Farhat, Mohamed ;
Rockstuhl, Carsten ;
Lederer, Falk .
OPTICS EXPRESS, 2012, 20 (27) :28017-28024
[2]   In-depth investigation and applications of novel silicon photonics microstructures supporting optical vorticity and waveguiding for ultra-narrowband near-infrared perfect absorption [J].
Avrahamy, Roy ;
Zohar, Moshe ;
Auslender, Mark ;
Milgrom, Benny ;
Hava, Shlomo ;
Shikler, Rafi .
PHOTONICS RESEARCH, 2020, 8 (03) :381-394
[3]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2 [J].
Bahauddin, Shah Mohammad ;
Robatjazi, Hossein ;
Thomann, Isabell .
ACS PHOTONICS, 2016, 3 (05) :853-862
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]   Interference theory of metamaterial perfect absorbers [J].
Chen, Hou-Tong .
OPTICS EXPRESS, 2012, 20 (07) :7165-7172
[7]   Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets [J].
Chen, Sai ;
Fan, Fei ;
Miao, Yinping ;
He, Xiaotong ;
Zhang, Kailiang ;
Chang, Shengjiang .
NANOSCALE, 2016, 8 (08) :4713-4719
[8]   Equivalent conductivity method: straightforward analytical solution for metasurface-based structures [J].
Danaeifar, Mohammad ;
Granpayeh, Nosrat ;
Mortensen, N. Asger ;
Xiao, Sanshui .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (38)
[9]   Ultra-light planar meta-absorber with wideband and full-polarization properties [J].
Du, Zhiqiang ;
Liang, Jiangang ;
Cai, Tong ;
Wang, Xin ;
Zhang, Qingdong ;
Deng, Taowu ;
Wu, Borui ;
Mao, Ruiqi ;
Wang, Dengpan .
OPTICS EXPRESS, 2021, 29 (05) :6434-6444
[10]   Identifying the perfect absorption of metamaterial absorbers [J].
Duan, G. ;
Schalch, J. ;
Zhao, X. ;
Zhang, J. ;
Averitt, R. D. ;
Zhang, X. .
PHYSICAL REVIEW B, 2018, 97 (03)