Atlas-Based Segmentation of Brain Tumor Images Using a Markov Random Field-Based Tumor Growth Model and Non-Rigid Registration

被引:31
作者
Bauer, Stefan [1 ]
Seiler, Christof [1 ]
Bardyn, Thibaut [1 ]
Buechler, Philippe [1 ]
Reyes, Mauricio [1 ]
机构
[1] Univ Bern, Inst Surg Technol & Biomech, CH-3012 Bern, Switzerland
来源
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2010年
关键词
MR-IMAGES; DEFORMATION; ALGORITHMS;
D O I
10.1109/IEMBS.2010.5627302
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.
引用
收藏
页码:4080 / 4083
页数:4
相关论文
共 14 条
[1]   Glioma dynamics and computational models:: a review of segmentation, registration, and in silico growth algorithms and their clinical applications [J].
Angelini, Elsa D. ;
Clatz, Olivier ;
Mandonnet, Emmanuel ;
Konukoglu, Ender ;
Capelle, Laurent ;
Duffau, Hugues .
CURRENT MEDICAL IMAGING REVIEWS, 2007, 3 (04) :262-276
[2]   Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation [J].
Clatz, O ;
Sermesant, M ;
Bondiau, PY ;
Delingette, H ;
Warfield, SK ;
Malandain, G ;
Ayache, N .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1334-1346
[3]  
Cocosco C., 1997, NEUROIMAGE, V5, pS425, DOI DOI 10.1016/S1053-8119(97)80018-3
[4]   Automatic 3-D model-based neuroanatomical segmentation [J].
Collins, DL ;
Holmes, CJ ;
Peters, TM ;
Evans, AC .
HUMAN BRAIN MAPPING, 1995, 3 (03) :190-208
[5]   Atlas-based segmentation of pathological MR brain images using a model of lesion growth [J].
Cuadra, MB ;
Pollo, C ;
Bardera, A ;
Cuisenaire, O ;
Villemure, JG ;
Thiran, JP .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (10) :1301-1314
[6]   Automated segmentation of MR images of brain tumors [J].
Kaus, MR ;
Warfield, SK ;
Nabavi, A ;
Black, PM ;
Jolesz, FA ;
Kikinis, R .
RADIOLOGY, 2001, 218 (02) :586-591
[7]   Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration [J].
Klein, Arno ;
Andersson, Jesper ;
Ardekani, Babak A. ;
Ashburner, John ;
Avants, Brian ;
Chiang, Ming-Chang ;
Christensen, Gary E. ;
Collins, D. Louis ;
Gee, James ;
Hellier, Pierre ;
Song, Joo Hyun ;
Jenkinson, Mark ;
Lepage, Claude ;
Rueckert, Daniel ;
Thompson, Paul ;
Vercauteren, Tom ;
Woods, Roger P. ;
Mann, J. John ;
Parsey, Ramin V. .
NEUROIMAGE, 2009, 46 (03) :786-802
[8]  
MARIAS K, 2009, SER IFMBE P, V25, P2124
[9]   Deformable registration of brain tumor images via a statistical model of tumor-induced deformation [J].
Mohamed, Ashraf ;
Zacharaki, Evangelia I. ;
Shen, Dinggang ;
Davatzikos, Christos .
MEDICAL IMAGE ANALYSIS, 2006, 10 (05) :752-763
[10]   Simulation of brain tumors in MR images for evaluation of segmentation efficacy [J].
Prastawa, Marcel ;
Bullitt, Elizabeth ;
Gerig, Guido .
MEDICAL IMAGE ANALYSIS, 2009, 13 (02) :297-311