Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: A vector-based approach

被引:45
作者
Ahmadi, S. M. [1 ]
Hedayati, R. [1 ]
Jain, R. K. Ashok Kumar [1 ]
Li, Y. [1 ]
Leeflang, S. [1 ]
Zadpoor, A. A. [1 ]
机构
[1] Delft Univ Technol TU Delft, Fac Mech Maritime & Mat Engn, Dept Biomech Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
关键词
Porous biomaterials; SLM; Additive manufacturing; Exposure time; Laser power; Mechanical properties; UNIT CELLS; LATTICE STRUCTURES; FATIGUE BEHAVIOR; TITANIUM-ALLOYS; TI-6AL-4V; IMPLANTS; PREDICTION; POWDER; EBM;
D O I
10.1016/j.matdes.2017.08.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additively manufactured (AM) porous structures are a new class of biomaterials with many advantages as compared to conventionally produced biomaterials. The goal of this study was to find out how the laser processing parameters including laser power and exposure time affect the mechanical properties, topology, and microstructure of porous biomaterials AM using a novel vector-based approach. Several cylindrical porous specimens were additively manufactured using a wide range of exposure time and laser power. The effects of those parameters on the surface roughness, strut diameter, relative density, hardness, elastic modulus, yield stress, first maximum stress, and plateau stress of the porous structures were studied. The results showed that the rate of change in mechanical and topological properties with respect to exposure time was non-linear while it was linear with respect to the laser power. The results also showed that the effects of laser power and exposure time on the mechanical properties and topology of AM porous structures could be decoupled from each other, enabling derivation of predictive emperical relationships. The emperical and experimental curves showed very good agreement, which further validates the validity of the separation method used for obtaining the emperical relationships. The analytical relationships for elastic modulus and yield stress that we had obtained in a previous study could predict the elastic modulus and yield stress of the porous strucutres when the energy input was high enough (i.e. exposure times >= 450 mu s), because the local mechanical properties of the matrix material decreased for the lower levels of energy input. The change in the mechanical properties of the bulk material due to change in laser processing parameters should thus be taken into account. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 243
页数:10
相关论文
共 43 条
[1]   Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells [J].
Ahmadi, S. M. ;
Campoli, G. ;
Yavari, S. Amin ;
Sajadi, B. ;
Wauthle, R. ;
Schrooten, J. ;
Weinans, H. ;
Zadpoor, A. A. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 34 :106-115
[2]   Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties [J].
Ahmadi, Seyed Mohammad ;
Yavari, Saber Amin ;
Wauthle, Ruebn ;
Pouran, Behdad ;
Schrooten, Jan ;
Weinans, Harrie ;
Zadpoor, Amir A. .
MATERIALS, 2015, 8 (04) :1871-1896
[3]  
[Anonymous], 2011, Reference number ISO, V13314, P1
[4]   Mechanical properties of open-cell rhombic dodecahedron cellular structures [J].
Babaee, Sahab ;
Jahromi, Babak Haghpanah ;
Ajdari, Amin ;
Nayeb-Hashemi, Hamid ;
Vaziri, Ashkan .
ACTA MATERIALIA, 2012, 60 (6-7) :2873-2885
[5]   Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J].
Bobbert, F. S. L. ;
Lietaert, K. ;
Eftekhari, A. A. ;
Pouran, B. ;
Ahmadi, S. M. ;
Weinans, H. ;
Zadpoor, A. A. .
ACTA BIOMATERIALIA, 2017, 53 :572-584
[6]   Tailoring Selective Laser Melting Process Parameters for NiTi Implants [J].
Bormann, Therese ;
Schumacher, Ralf ;
Mueller, Bert ;
Mertmann, Matthias ;
de Wild, Michael .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (12) :2519-2524
[7]  
Brunette D. M., 2012, ENG BIOL RESPONSES M
[8]   Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J].
Campoli, G. ;
Borleffs, M. S. ;
Yavari, S. Amin ;
Wauthle, R. ;
Weinans, H. ;
Zadpoor, A. A. .
MATERIALS & DESIGN, 2013, 49 :957-965
[9]   Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants [J].
Chan, Kwai S. ;
Koike, Marie ;
Mason, Robert L. ;
Okabe, Toru .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (02) :1010-1022
[10]   Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials [J].
Delgado, Jordi ;
Ciurana, Joaquim ;
Rodriguez, Ciro A. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 60 (5-8) :601-610