Eigenvalue ratio statistics of complex networks: Disorder versus randomness

被引:4
作者
Mishra, Ankit [1 ]
Raghav, Tanu [1 ]
Jalan, Sarika [1 ]
机构
[1] Indian Inst Technol Indore, Dept Phys, Complex Syst Lab, Khandwa Rd, Indore 453552, India
关键词
ANDERSON LOCALIZATION; EVOLUTION; SPECTRA;
D O I
10.1103/PhysRevE.105.064307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an important tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue ratios distribution of various model networks, namely, small-world, Erd??s-R??nyi random, and (dis)assortative random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics. Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending upon the strength of the disorder. The critical disorder (wc) required to procure the Poisson statistics increases with the randomness in the network architecture. We relate wc with the time taken by maximum entropy random walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than the principal one for various network dynamics such as transient behavior.
引用
收藏
页数:9
相关论文
共 64 条
[51]   Spectral properties of complex networks [J].
Sarkar, Camellia ;
Jalan, Sarika .
CHAOS, 2018, 28 (10)
[52]   Efficient and coherent excitation transfer across disordered molecular networks [J].
Scholak, Torsten ;
de Melo, Fernando ;
Wellens, Thomas ;
Mintert, Florian ;
Buchleitner, Andreas .
PHYSICAL REVIEW E, 2011, 83 (02)
[53]   Transport and Anderson localization in disordered two-dimensional photonic lattices [J].
Schwartz, Tal ;
Bartal, Guy ;
Fishman, Shmuel ;
Segev, Mordechai .
NATURE, 2007, 446 (7131) :52-55
[54]   STATISTICS OF SPECTRA OF DISORDERED-SYSTEMS NEAR THE METAL-INSULATOR-TRANSITION [J].
SHKLOVSKII, BI ;
SHAPIRO, B ;
SEARS, BR ;
LAMBRIANIDES, P ;
SHORE, HB .
PHYSICAL REVIEW B, 1993, 47 (17) :11487-11490
[55]   Many-body localization due to random interactions [J].
Sierant, Piotr ;
Delande, Dominique ;
Zakrzewski, Jakub .
PHYSICAL REVIEW A, 2017, 95 (02)
[56]   EIGENVECTOR LOCALIZATION AS A TOOL TO STUDY SMALL COMMUNITIES IN ONLINE SOCIAL NETWORKS [J].
Slanina, Frantisek ;
Konopasek, Zdenek .
ADVANCES IN COMPLEX SYSTEMS, 2010, 13 (06) :699-723
[57]   Effect of localization on the stability of mutualistic ecological networks [J].
Suweis, Samir ;
Grilli, Jacopo ;
Banavar, Jayanth R. ;
Allesina, Stefano ;
Maritan, Amos .
NATURE COMMUNICATIONS, 2015, 6
[58]   Critical behavior at the localization transition on random regular graphs [J].
Tikhonov, K. S. ;
Mirlin, A. D. .
PHYSICAL REVIEW B, 2019, 99 (21)
[59]   Anderson localization and ergodicity on random regular graphs [J].
Tikhonov, K. S. ;
Mirlin, A. D. ;
Skvortsov, M. A. .
PHYSICAL REVIEW B, 2016, 94 (22)
[60]   Normal mode analysis of spectra of random networks [J].
Torres-Vargas, G. ;
Fossion, R. ;
Mendez-Bermudez, J. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545