Eigenvalue ratio statistics of complex networks: Disorder versus randomness

被引:4
作者
Mishra, Ankit [1 ]
Raghav, Tanu [1 ]
Jalan, Sarika [1 ]
机构
[1] Indian Inst Technol Indore, Dept Phys, Complex Syst Lab, Khandwa Rd, Indore 453552, India
关键词
ANDERSON LOCALIZATION; EVOLUTION; SPECTRA;
D O I
10.1103/PhysRevE.105.064307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an important tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue ratios distribution of various model networks, namely, small-world, Erd??s-R??nyi random, and (dis)assortative random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics. Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending upon the strength of the disorder. The critical disorder (wc) required to procure the Poisson statistics increases with the randomness in the network architecture. We relate wc with the time taken by maximum entropy random walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than the principal one for various network dynamics such as transient behavior.
引用
收藏
页数:9
相关论文
共 64 条
  • [31] Observation of transverse Anderson localization in an optical fiber
    Karbasi, Salman
    Mirr, Craig R.
    Yarandi, Parisa Gandomkar
    Frazier, Ryan J.
    Koch, Karl W.
    Mafi, Arash
    [J]. OPTICS LETTERS, 2012, 37 (12) : 2304 - 2306
  • [32] Statistical properties of the spectrum of the extended Bose-Hubbard model
    Kollath, Corinna
    Roux, Guillaume
    Biroli, Giulio
    Laeuchli, Andreas M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [33] Universality in the spectral and eigenfunction properties of random networks
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Martinez-Mendoza, A. J.
    Rodrigues, Francisco A.
    Peron, Thomas K. D. M.
    [J]. PHYSICAL REVIEW E, 2015, 91 (03)
  • [34] Energy-level statistics at the metal-insulator transition in anisotropic systems
    Milde, F
    Römer, RA
    Schreiber, M
    [J]. PHYSICAL REVIEW B, 2000, 61 (09) : 6028 - 6035
  • [35] MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
  • [36] Eigenvalue ratio statistics of complex networks: Disorder versus randomness
    Mishra, Ankit
    Raghav, Tanu
    Jalan, Sarika
    [J]. PHYSICAL REVIEW E, 2022, 105 (06)
  • [37] Geometrical effects on energy transfer in disordered open quantum systems
    Mohseni, M.
    Shabani, A.
    Lloyd, S.
    Omar, Y.
    Rabitz, H.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (20)
  • [38] Many-body localization and thermalization in disordered Hubbard chains
    Mondaini, Rubem
    Rigol, Marcos
    [J]. PHYSICAL REVIEW A, 2015, 92 (04):
  • [39] Improved unfolding by detrending of statistical fluctuations in quantum spectra
    Morales, Irving O.
    Landa, E.
    Stransky, P.
    Frank, A.
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):
  • [40] May's instability in large economies
    Moran, Jose
    Bouchaud, Jean-Philippe
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)