Eigenvalue ratio statistics of complex networks: Disorder versus randomness

被引:4
作者
Mishra, Ankit [1 ]
Raghav, Tanu [1 ]
Jalan, Sarika [1 ]
机构
[1] Indian Inst Technol Indore, Dept Phys, Complex Syst Lab, Khandwa Rd, Indore 453552, India
关键词
ANDERSON LOCALIZATION; EVOLUTION; SPECTRA;
D O I
10.1103/PhysRevE.105.064307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an important tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue ratios distribution of various model networks, namely, small-world, Erd??s-R??nyi random, and (dis)assortative random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics. Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending upon the strength of the disorder. The critical disorder (wc) required to procure the Poisson statistics increases with the randomness in the network architecture. We relate wc with the time taken by maximum entropy random walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than the principal one for various network dynamics such as transient behavior.
引用
收藏
页数:9
相关论文
共 64 条
  • [1] How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
    Adolphs, Julia
    Renger, Thomas
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (08) : 2778 - 2797
  • [2] Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability
    Aguirre, Jacobo
    Buldu, Javier M.
    Manrubia, Susanna C.
    [J]. PHYSICAL REVIEW E, 2009, 80 (06):
  • [3] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [4] Geometrical and spectral study of β-skeleton graphs
    Alonso, L.
    Mendez-Bermudez, J. A.
    Estrada, Ernesto
    [J]. PHYSICAL REVIEW E, 2019, 100 (06)
  • [5] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [6] [Anonymous], 2004, RANDOM MATRICES, DOI DOI 10.1103/PhysRevE.74.041119
  • [7] Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles
    Atas, Y. Y.
    Bogomolny, E.
    Giraud, O.
    Roux, G.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (08)
  • [8] Universality in complex networks: Random matrix analysis
    Bandyopadhyay, Jayendra N.
    Jalan, Sarika
    [J]. PHYSICAL REVIEW E, 2007, 76 (02):
  • [9] Small-world brain networks
    Bassett, Danielle Smith
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2006, 12 (06) : 512 - 523
  • [10] Localisation of optical modes in complex networks
    Berkovits, R.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 161 (1) : 259 - 265