Deep Learning based Gait Analysis for Contactless Dementia Detection System from Video Camera

被引:8
作者
Zhang, Zhonghao [1 ]
Jiang, Yangyang [2 ]
Cao, Xingyu [1 ]
Yang, Xue [2 ]
Zhu, Ce [1 ]
Li, Ying [2 ]
Liu, Yipeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Xiyuan Ave 2006, Chengdu 611731, Peoples R China
[2] Sichuan Univ, West China Hosp, Ctr Gerontol & Geriatr, Natl Clin Res Ctr Geriatr, Guoxuexiang 37, Chengdu 610041, Peoples R China
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2021年
关键词
dementia detection; gait analysis; video processing; convolutional neural networks; deep learning; EARLY-DIAGNOSIS; RECOGNITION; CLASSIFICATION;
D O I
10.1109/ISCAS51556.2021.9401596
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dementia is a neurodegenerative disease with a high incidence in the elderly. However, there is no effective treatment for this disease, and early intervention has a great effect to slow the deterioration. Currently, the detection of dementia is mainly achieved using questionnaire-like neuropsychological tests. Such ways usually cost a lot of time. To this end, we design a contactless dementia detection system based on gait analysis from surveillance video, and it can serve as a home-based healthcare system. This system applies a Kinect 2.0 camera to capture the human video and extract the skeleton joints at a rate of 15 frames per second. Two different gaits are collected for detection, namely single-task gait and dual-task gait. In this paper, we design a convolutional neural network based classifier to extract features in a data-driven way from these two groups of videos, but not take hand-crafted features. Experimental results show that we achieve a sensitivity of 74.10% on the test set using this system, and the processing only takes several minutes for early dementia detection.
引用
收藏
页数:5
相关论文
共 21 条
[1]   DEMENTIA A problem for our age [J].
Abbott, Alison .
NATURE, 2011, 475 (7355) :S2-S4
[2]   DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect [J].
Ahmed, Faisal ;
Paul, Padma Polash ;
Gavrilova, Marina L. .
VISUAL COMPUTER, 2015, 31 (6-8) :915-924
[3]   Handwritten pattern recognition for early Parkinson's disease diagnosis [J].
Bernardo, Lucas S. ;
Quezada, Angeles ;
Munoz, Roberto ;
Maia, Fernanda Martins ;
Pereira, Clayton R. ;
Wu, Wanqing ;
de Albuquerque, Victor Hugo C. .
PATTERN RECOGNITION LETTERS, 2019, 125 :78-84
[4]  
Boyd JE, 2005, LECT NOTES COMPUT SC, V3161, P19
[5]  
De Marsico M, 2017, HUMAN RECOGNITION IN UNCONSTRAINED ENVIRONMENTS: USING COMPUTER VISION, PATTERN RECOGNITION AND MACHINE LEARNING METHODS FOR BIOMETRICS, P177, DOI 10.1016/B978-0-08-100705-1.00008-7
[6]   2Detection of mild cognitive impairment and Alzheimer's disease using dual-task gait assessments and machine learning [J].
Ghoraani, Behnaz ;
Boettcher, Lillian N. ;
Hssayeni, Murtadha D. ;
Rosenfeld, Amie ;
Tolea, Magdalena, I ;
Galvin, James E. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 64
[7]   Dementia in China: epidemiology, clinical management, and research advances [J].
Jia, Longfei ;
Quan, Meina ;
Fu, Yue ;
Zhao, Tan ;
Li, Yan ;
Wei, Cuibai ;
Tang, Yi ;
Qin, Qi ;
Wang, Fen ;
Qiao, Yuchen ;
Shi, Shengliang ;
Wang, Yan-Jiang ;
Du, Yifeng ;
Zhang, Jiewen ;
Zhang, Junjian ;
Luo, Benyan ;
Qu, Qiumin ;
Zhou, Chunkui ;
Gauthier, Serge ;
Jia, Jianping ;
Zhou, Aihong ;
Zuo, Xiumei ;
Chu, Changbiao ;
Yu, Yueyi ;
Chang, Hong ;
Li, Dan ;
Guo, Dongmei ;
Xing, Yi ;
Huang, Xiaobo ;
Qiu, Qiongqiong ;
Xu, Hui ;
Yan, Xin ;
Chen, Shuoqi ;
Yang, Jianwei ;
Lyu, Jihui ;
Jia, Zhirong ;
Huang, Yonghua ;
Jia, Jianjun ;
Peng, Dantao ;
Ji, Yong ;
Guo, Qihao ;
Cao, Yunpeng ;
Sun, Li ;
Li, Yang ;
Lyu, Peiyuan ;
Gang, Baozhi ;
Zhang, Nan ;
Tan, Lan ;
Tang, Huidong ;
Li, Honglei .
LANCET NEUROLOGY, 2020, 19 (01) :81-92
[8]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[9]   Digital biomarkers for Alzheimer's disease: the mobile/wearable devices opportunity [J].
Kourtis, Lampros C. ;
Regele, Oliver B. ;
Wright, Justin M. ;
Jones, Graham B. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90