The fractional Calderon problem: Low regularity and stability

被引:53
作者
Rueland, Angkana [1 ]
Salo, Mikko [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
Caldernon problem; Fractional Laplacian; Stability; UNIQUE CONTINUATION; SCHRODINGER-EQUATIONS; INVERSE PROBLEM; LIPSCHITZ; LAPLACIANS; DOMAINS; THEOREM; SPACES;
D O I
10.1016/j.na.2019.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Calderon problem for the fractional Schrodinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant L-p or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argument. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:56
相关论文
共 59 条
[31]  
Koch H., ARXIV160506662
[32]  
Lavine R., 1991, P 10 C MATH PHYS, P434
[33]   EXACT CONTROL OF THE HEAT-EQUATION [J].
LEBEAU, G ;
ROBBIANO, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :335-356
[34]   Sharp commutator estimates via harmonic extensions [J].
Lenzmann, Enno ;
Schikorra, Armin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
[35]  
LIONS J.-L., 1972, Die Grundlehren der mathematischen Wissenschaften, V181
[36]   Exponential instability in an inverse problem for the Schrodinger equation [J].
Mandache, N .
INVERSE PROBLEMS, 2001, 17 (05) :1435-1444
[37]  
Maz'ya VG, 2009, GRUNDLEHR MATH WISS, V337, P1
[38]   RECONSTRUCTIONS FROM BOUNDARY MEASUREMENTS [J].
NACHMAN, AI .
ANNALS OF MATHEMATICS, 1988, 128 (03) :531-576
[39]   A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions [J].
Novikov, Roman ;
Santacesaria, Matteo .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (07) :765-785
[40]  
Olver F. W., 2010, NIST Handbook of Mathematical Functions