The fractional Calderon problem: Low regularity and stability

被引:53
作者
Rueland, Angkana [1 ]
Salo, Mikko [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
Caldernon problem; Fractional Laplacian; Stability; UNIQUE CONTINUATION; SCHRODINGER-EQUATIONS; INVERSE PROBLEM; LIPSCHITZ; LAPLACIANS; DOMAINS; THEOREM; SPACES;
D O I
10.1016/j.na.2019.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Calderon problem for the fractional Schrodinger equation was introduced in the work Ghosh et al. (to appear) which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant L-p or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argument. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:56
相关论文
共 59 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F, P916
[2]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[3]   The stability for the Cauchy problem for elliptic equations [J].
Alessandrini, Giovanni ;
Rondi, Luca ;
Rosset, Edi ;
Vessella, Sergio .
INVERSE PROBLEMS, 2009, 25 (12)
[4]  
Astala K, 2016, ANN SCI ECOLE NORM S, V49, P1027
[5]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, P343
[6]   Carleman Estimates for the Schrodinger Operator. Applications to Quantitative Uniqueness [J].
Bakri, Laurent .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (01) :69-91
[7]   STABILITY AND UNIQUENESS FOR A TWO-DIMENSIONAL INVERSE BOUNDARY VALUE PROBLEM FOR LESS REGULAR POTENTIALS [J].
Blasten, Eemeli ;
Imanuvilov, Oleg Yu. ;
Yamamoto, Masahiro .
INVERSE PROBLEMS AND IMAGING, 2015, 9 (03) :709-723
[8]  
Bui HQ, 2017, CONTEMP MATH, V693, P109, DOI 10.1090/conm/693/13935
[9]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53