Nonparametric estimation of trend for SDEs with delay driven by a fractional brownian motion with small noise

被引:0
作者
Rao, B. L. S. Prakasa [1 ]
机构
[1] CR Rao Adv Inst Res Math Stat & Comp Sci, Hyderabad, India
关键词
Nonparametric estimation; estimation of trend; stochastic differential equation with delay; kernel method of estimation; fractional Brownian motion; MAXIMAL INEQUALITIES;
D O I
10.1080/07362994.2021.1972815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of nonparametric estimation of the trend for stochastic differential equations with delay and driven by a fractional Brownian motion through the method of kernel-type estimation for the estimation of a probability density function.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 50 条
[21]   Estimation in models driven by fractional Brownian motion [J].
Berzin, Corinne ;
Leon, Jose R. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02) :191-213
[22]   On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion [J].
Nourdin, I ;
Simon, T .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) :907-912
[23]   Generalized delay BSDE driven by fractional Brownian motion [J].
Sane, Ibrahima ;
Aidara, Sadibou ;
Diallo, Amadou Saikou ;
Manga, Clement .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2024, :407-414
[24]   Harnack Type Inequalities for SDEs Driven by Fractional Brownian Motion with Markovian Switching [J].
Pei, Wenyi ;
Yan, Litan ;
Chen, Zhenlong .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) :1403-1414
[25]   Harnack Type Inequalities for SDEs Driven by Fractional Brownian Motion with Markovian Switching [J].
Wenyi Pei ;
Litan Yan ;
Zhenlong Chen .
Acta Mathematica Scientia, 2023, 43 :1403-1414
[26]   Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects [J].
Rao, B. L. S. Prakasa .
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2021, 83 (02) :554-568
[27]   Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects [J].
B. L. S. Prakasa Rao .
Sankhya A, 2021, 83 :554-568
[28]   A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one [J].
Nourdin, Ivan .
SEMINAIRE DE PROBABILITES XLI, 2008, 1934 :181-197
[30]   Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness [J].
El Barrimi, Oussama ;
Ouknine, Youssef .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (04) :303-313