Nonparametric estimation of trend for SDEs with delay driven by a fractional brownian motion with small noise

被引:0
作者
Rao, B. L. S. Prakasa [1 ]
机构
[1] CR Rao Adv Inst Res Math Stat & Comp Sci, Hyderabad, India
关键词
Nonparametric estimation; estimation of trend; stochastic differential equation with delay; kernel method of estimation; fractional Brownian motion; MAXIMAL INEQUALITIES;
D O I
10.1080/07362994.2021.1972815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of nonparametric estimation of the trend for stochastic differential equations with delay and driven by a fractional Brownian motion through the method of kernel-type estimation for the estimation of a probability density function.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 50 条
  • [11] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [12] Distribution dependent SDEs driven by additive fractional Brownian motion
    Galeati, Lucio
    Harang, Fabian A.
    Mayorcas, Avi
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 251 - 309
  • [13] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [14] Nonparametric Estimation of Linear Multiplier for Processes Driven by Mixed Fractional Brownian Motion
    Rao, B. L. S. Prakasa
    STATISTICS AND APPLICATIONS, 2021, 19 (01): : 67 - 76
  • [15] Nonparametric estimation for random effects models driven by fractional Brownian motion using Hermite polynomials
    Hamid El Maroufy
    Souad Ichi
    Mohamed El Omari
    Yousri Slaoui
    Statistical Inference for Stochastic Processes, 2024, 27 : 305 - 333
  • [16] Nonparametric estimation for random effects models driven by fractional Brownian motion using Hermite polynomials
    El Maroufy, Hamid
    Ichi, Souad
    El Omari, Mohamed
    Slaoui, Yousri
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2024, 27 (02) : 305 - 333
  • [17] Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion
    Keddi, Abdelmalik
    Madani, Fethi
    Bouchentouf, Amina Angelika
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 128 - 145
  • [18] Delay BSDEs driven by fractional Brownian motion
    Aidara, Sadibou
    Sane, Ibrahima
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (03) : 273 - 284
  • [19] HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY SUBORDINATE FRACTIONAL BROWNIAN MOTION
    LI, Z. H. I.
    Peng, Y. A. R. O. N. G.
    Yan, L. I. T. A. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1429 - 1453
  • [20] Harnack inequalities and applications for functional SDEs driven by fractional Brownian motion
    Li, Zhi
    Luo, Jiaowan
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (04) : 213 - 226