Nonparametric estimation of trend for SDEs with delay driven by a fractional brownian motion with small noise

被引:0
作者
Rao, B. L. S. Prakasa [1 ]
机构
[1] CR Rao Adv Inst Res Math Stat & Comp Sci, Hyderabad, India
关键词
Nonparametric estimation; estimation of trend; stochastic differential equation with delay; kernel method of estimation; fractional Brownian motion; MAXIMAL INEQUALITIES;
D O I
10.1080/07362994.2021.1972815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of nonparametric estimation of the trend for stochastic differential equations with delay and driven by a fractional Brownian motion through the method of kernel-type estimation for the estimation of a probability density function.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 17 条
[1]   Financial markets with memory I: Dynamic models [J].
Anh, V ;
Inoue, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) :275-300
[2]  
Gushchin AA, 1999, BERNOULLI, V5, P1059
[3]  
Ibragimov I.A., 1979, STAT ESTIMATION ASYM
[4]  
Kutoyants A. Y., 2003, Statistical Inference for Ergodic Diffusion Processes
[5]  
Kutoyants Y.A, 2019, PUBL I STAT U PARIS, V63, P11
[6]   On delay estimation for stochastic differential equations [J].
Kutoyants, YA .
STOCHASTICS AND DYNAMICS, 2005, 5 (02) :333-342
[7]  
Kutoyants YA, 1994, IDENTIFICATION DYNAM
[8]   Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion [J].
Mémin, J ;
Mishura, Y ;
Valkeila, E .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (02) :197-206
[9]   Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion [J].
Mishra M.N. ;
Prakasa Rao B.L.S. .
Statistical Inference for Stochastic Processes, 2011, 14 (2) :101-109
[10]  
Mohammed S., 1990, Stochastics, V29, P259