Certifiably Robust Variational Autoencoders

被引:0
|
作者
Barrett, Ben [1 ]
Camuto, Alexander [1 ,3 ]
Willetts, Matthew [2 ,3 ]
Rainforth, Tom [1 ]
机构
[1] Univ Oxford, Oxford, England
[2] UCL, London, England
[3] Alan Turing Inst, London, England
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151 | 2022年 / 151卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an approach for training variational autoencoders (VAEs) that are certifiably robust to adversarial attack. Specifically, we first derive actionable bounds on the minimal size of an input perturbation required to change a VAE's reconstruction by more than an allowed amount, with these bounds depending on certain key parameters such as the Lipschitz constants of the encoder and decoder. We then show how these parameters can be controlled, thereby providing a mechanism to ensure a priori that a VAE will attain a desired level of robustness. Moreover, we extend this to a complete practical approach for training such VAEs to ensure our criteria are met. Critically, our method allows one to specify a desired level of robustness upfront and then train a VAE that is guaranteed to achieve this robustness. We further demonstrate that these Lipschitz-constrained VAEs are more robust to attack than standard VAEs in practice.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Robust Variational Autoencoders for Outlier Detection and Repair of Mixed-Type Data
    Eduardo, Simao
    Nazabal, Alfredo
    Williams, Christopher K. I.
    Sutton, Charles
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4056 - 4065
  • [22] Lifelong Mixture of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 461 - 474
  • [23] Quality metrics of variational autoencoders
    Leontev, Mikhail
    Mikheev, Alexander
    Sviatov, Kirill
    Sukhov, Sergey
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [24] Efficient Evolution of Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1541 - 1550
  • [25] Variational Autoencoders for Assessing Sustainability
    Fernando Romero-Canizares, Jose
    Vicente-Galindo, Purificacion
    DOCTORAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGIES - DSICT, 2022, 846 : 47 - 62
  • [26] Dynamical Variational Autoencoders and KalmanNet: New Approaches to Robust High-Precision Navigation
    Shen, Dan
    Ma, Yuexin
    Liu, Gelu
    Hu, Jiaocheng
    Weng, Qizhen
    Zhu, Xiangwei
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1141 - 1146
  • [27] Variational Graph Normalized AutoEncoders
    Ahn, Seong Jin
    Kim, MyoungHo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2827 - 2831
  • [28] Resampled Priors for Variational Autoencoders
    Bauer, Matthias
    Mnih, Andriy
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 66 - 75
  • [29] Inference Suboptimality in Variational Autoencoders
    Cremer, Chris
    Li, Xuechen
    Duvenaud, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [30] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698