Approximation and Dependence via Multiteam Semantics

被引:9
作者
Durand, Arnaud [1 ]
Hannula, Miika [2 ]
Kontinen, Juha [2 ]
Meier, Arne [3 ]
Virtema, Jonni [3 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu Paris Rive Gauche, CNRS UMR 7586, Paris, France
[2] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[3] Leibniz Univ Hannover, Inst Theoret Informat, Hannover, NH, Germany
来源
FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS (FOIKS 2016) | 2016年 / 9616卷
关键词
INDEPENDENCE; LOGIC; COMPLEXITY; INCLUSION;
D O I
10.1007/978-3-319-30024-5_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define a variant of team semantics called multiteam semantics based on multisets and study the properties of various logics in this framework. In particular, we define natural probabilistic versions of inclusion and independence atoms and certain approximation operators motivated by approximate dependence atoms of Vaananen.
引用
收藏
页码:271 / 291
页数:21
相关论文
共 41 条
[1]  
[Anonymous], 1989, Studies in Logic and the Foundations of Mathematics
[2]  
Bottcher S., 2014, P 23 ACM CIKM, P41
[3]  
Boutilier C, 1996, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P115
[4]  
Corander J., LOGICAL APPROA UNPUB
[5]  
DALEN D, 2004, LOGIC STRUCTURE
[6]  
Durand A., 2015, DEPENDENCE L IN PRES
[7]   Tractability Frontier of Data Complexity in Team Semantics [J].
Durand, Arnaud ;
Kontinen, Juha ;
de Rugy-Altherre, Nicolas ;
Vaananen, Jouko .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (193) :73-85
[8]  
Ebbing Johannes, 2013, Logic, Language, Information, and Computation. 20th International Workshop, WoLLIC 2013. Proceedings: LNCS 8071, P126, DOI 10.1007/978-3-642-39992-3_13
[9]   Lottery Semantics: A Compositional Semantics for Probabilistic First-Order Logic with Imperfect Information [J].
Galliani, P. ;
Mann, A. L. .
STUDIA LOGICA, 2013, 101 (02) :293-322
[10]  
Galliani P., 2013, LEIBNIZ INT P INFORM, V23, P281