On the symplectic structures on moduli space of stable sheaves over a K3 or abelian surface and on Hilbert scheme of points

被引:0
作者
Biswas, I
Mukherjee, A
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Max Planck Inst Math Naturwissensch, D-04103 Leipzig, Germany
关键词
D O I
10.1007/s00013-003-4613-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a smooth very ample curve C on a K3 or abelian surface X. Let M denote the moduli space of pairs of the form (F, s), where F is a stable sheaf over X whose Hilbert polynomial coincides with that of the direct image, by the inclusion map of C in X, of aline bundle of degree d over C, and s is a nonzero section of F. Assume d to be sufficiently large such that F has a nonzero section. The pullback of the Mukai symplectic form on moduli spaces of stable sheaves over X is a holomorphic 2-form on M. On the other hand, M has a map to a Hilbert scheme parametrizing 0-dimensional subschemes of X that sends (F, s) to the divisor, defined by s, on the curve defined by the support of F. We prove that the above 2-form on M coincides with the pullback of the symplectic form on the Hilbert scheme.
引用
收藏
页码:507 / 515
页数:9
相关论文
共 45 条
[31]   Nonexistence of a crepant resolution of some moduli spaces of sheaves on a K3 surface [J].
Choy, Jaeyoo ;
Kiem, Young-Hoon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (01) :35-54
[32]   On the non-symplectic involutions of the Hilbert square of a K3 surface [J].
Boissiere, S. ;
Cattaneo, A. ;
Markushevich, D. G. ;
Sarti, A. .
IZVESTIYA MATHEMATICS, 2019, 83 (04) :731-742
[33]   The abelian fibration on the Hilbert cube of a K3 surface of genus 9 [J].
Iliev, Atanas ;
Ranestad, Kristian .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (01) :1-26
[34]   The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface [J].
OGrady, KG .
JOURNAL OF ALGEBRAIC GEOMETRY, 1997, 6 (04) :599-644
[35]   The moduli space of symplectic bundles over a compact Riemann surface and quaternionic structures [J].
Anton-Sancho, Alvaro .
AIMS MATHEMATICS, 2025, 10 (06) :13451-13475
[36]   Automorphisms of Hilbert schemes of points on a generic projective K3 surface [J].
Cattaneo, Alberto .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) :2137-2152
[37]   Hilbert schemes of points on some K3 surfaces and Gieseker stable bundles [J].
Bruzzo, U ;
Maciocia, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 :255-261
[38]   The moduli space of 5 points on P1 and K3 surfaces [J].
Kondo, Shigeyuki .
Arithmetic and Geometry Around Hypergeometric Functions, 2007, 260 :189-206
[39]   Non-symplectic automorphisms of K3 surfaces with one-dimensional moduli space [J].
Artebani, Michela ;
Comparin, Paola ;
Valdes, Maria Elisa .
REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (04) :1161-1198
[40]   Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points [J].
Gilberto Bini ;
Samuel Boissière ;
Flaminio Flamini .
manuscripta mathematica, 2023, 172 :705-738