A new hierarchical approach for MOPSO based on Dynamic subdivision of the population using Pareto fronts

被引:0
|
作者
Fdhila, Raja [1 ]
Hamdani, Tarek M. [1 ]
Alimi, Adel M. [1 ]
机构
[1] Univ Sfax, Natl Sch Engineers ENIS, REGIM, Sfax 3038, Tunisia
来源
2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010) | 2010年
关键词
multiobjective optimization; Pareto Dominance; Pareto Fronts; dynamic population; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new hierarchical architecture for multi-objective optimization. Based on the concept of Pareto dominance, the process of implementation of the algorithm consists of two stages. First, when executing a multi-objective Particle S warm Optimization (MOPSO), a ranking operator is applied to the population in a predefined iteration to build an initial archive Using e-dominance. Second, several runs will be based on a dynamic number of sub-populations. Those populations, having a fixed size, are generated from the Pareto fronts witch are resulted from ranking operator. A comparative study with other algorithms existing in the literature has shown a better performance of our algorithm referring to some most used benchmarks.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Analyzing bi-objective optimization Pareto fronts using square shape slope index and NSGA-II: A multi-criteria decision-making approach
    Al-Majali, Bilal H.
    Zobaa, Ahmed F.
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [22] A new population initialization approach based on Metropolis–Hastings (MH) method
    Erik Cuevas
    Héctor Escobar
    Ram Sarkar
    Heba F. Eid
    Applied Intelligence, 2023, 53 : 16575 - 16593
  • [23] An Effective Approach for Regression Test Case Selection using Pareto based Multi-Objective Harmony Search
    Choudhary, Ankur
    Agrawal, Arun Prakash
    Kaur, Arvinder
    PROCEEDINGS 2018 IEEE/ACM 11TH INTERNATIONAL WORKSHOP ON SEARCH-BASED SOFTWARE TESTING (SBST), 2018, : 13 - 20
  • [24] Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach
    Khalesian, Mina
    Delavar, Mahmoud Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 53 : 126 - 139
  • [25] Population-Based Iterated Local Search Approach for Dynamic Vehicle Routing Problems
    Sabar, Nasser R.
    Goh, Say Leng
    Turky, Ayad
    Kendall, Graham
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 2933 - 2943
  • [26] An efficient registration-based approach for retinal blood vessel segmentation using generalized Pareto and fatigue pdf
    Kumar, K. Susheel
    Singh, Nagendra Pratap
    MEDICAL ENGINEERING & PHYSICS, 2022, 110
  • [27] A new characterization approach for heat sealing of polymer packaging films identifying optimum sealing parameters using Pareto-based trade-off analysis
    Gellerich, Peter Anton
    Majschak, Jens-Peter
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (44)
  • [28] Dynamic Signature Vertical Partitioning Using Selected Population-Based Algorithms
    Zalasinski, Marcin
    Niksa-Rynkiewicz, Tacjana
    Cpalka, Krzysztof
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II, 2021, 12855 : 511 - 518
  • [29] A new population initialization approach based on Metropolis-Hastings (MH) method
    Cuevas, Erik
    Escobar, Hector
    Sarkar, Ram
    Eid, Heba F.
    APPLIED INTELLIGENCE, 2023, 53 (13) : 16575 - 16593
  • [30] AI-based hierarchical approach for optimizing breast cancer detection using MammoWave device
    Taghipour-Gorjikolaie, Mehran
    Ghavami, Navid
    Papini, Lorenzo
    Badia, Mario
    Fracassini, Arianna
    Bigotti, Alessandra
    Palomba, Gianmarco
    Sanchez-Bayuela, Daniel Alvarez
    Castellano, Cristina Romero
    Loretoni, Riccardo
    Calabrese, Massimo
    Tagliafico, Alberto Stefano
    Ghavami, Mohammad
    Tiberi, Gianluigi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100