Fused Filament Fabrication-Based Additive Manufacturing of Commercially Pure Titanium

被引:38
作者
Thompson, Yvonne [1 ]
Polzer, Markus [1 ]
Gonzalez-Gutierrez, Joamin [2 ]
Kasian, Olga [3 ,4 ]
Heckl, Johannes P. [1 ]
Dalbauer, Valentin [1 ]
Kukla, Christian [5 ]
Felfer, Peter J. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci & Engn Inst 1, Martensstr 5, D-91058 Erlangen, Germany
[2] Univ Leoben, Dept Polymer Engn & Sci, Inst Polymer Proc, Otto Gloeckel Str 2, A-8700 Leoben, Austria
[3] Helmholtz Zentrum Berlin GmbH, Helmholtz Inst Erlangen Nurnberg, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci & Engn, D-058 Erlangen, Germany
[5] Univ Leoben, Ind Liaison Dept, Peter Tunner Str 27, A-8700 Leoben, Austria
关键词
additive manufacturing; highly filled filaments; material extrusion; powder metals; sintering; SINTER; POWDER;
D O I
10.1002/adem.202100380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fabrication of titanium components is very cost intensive, partly due to the complex machining and limited recyclability of waste material. For electrochemical applications, the excellent corrosion resistance of pure titanium is of high importance, whereas medium mechanical strength of fabricated parts is sufficient for such a use case. For smaller parts, metal fused filament fabrication (MF3) enables the fabrication of complex metallic structures densified during a final sintering step. Pure titanium can be processed to near-net-shape geometries for electrochemical applications if the parameters and the atmosphere during sintering are carefully monitored. Herein, the influence of thermal debinding and sintering parameters on the fabrication of high-density pure titanium using MF3 is investigated. Particular focus is placed on enhancing sintered density while limiting impurity uptake to conserve the high chemical purity of the initial powder material. Relative densities of 95% are repeatedly reached inside the bulk of the samples. An oxygen content of 0.56 wt% as a result of vacuum processing induces the formation of the retained alpha-Ti phase (925 HV0.2) inside the alpha matrix (295 HV0.2). Fabricated parts exhibit high mechanical strength, albeit reduced elongation due to remaining pores, and, in terms of electrochemistry, enhanced stability toward anodic dissolution.
引用
收藏
页数:12
相关论文
共 32 条
[1]   INCREASE OF SINTERING RATE OF TITANIUM POWDER DURING CYCLIC PHASE-TRANSFORMATION [J].
AKECHI, K ;
HARA, Z .
POWDER METALLURGY, 1981, 24 (01) :41-46
[2]  
[Anonymous], ASM Material Data Sheet
[3]   Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J].
Attar, H. ;
Calin, M. ;
Zhang, L. C. ;
Scudino, S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 593 :170-177
[4]  
Auinger M., 2012, ANGEW CHEM INT EDIT, V4
[5]  
Bin S., 2012, T JWRI, V41, P1
[6]  
Ebel T, 2015, Titanium Powder Metallurgy, DOI 10.1016/B978-0-12-800054-0.00019-8
[7]  
F04 Committee, UNS R50250, UNS R50400, UNS R50550, UNS R50700), DOI [10.1520/F0067-13, DOI 10.1520/F0067-13]
[8]   Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing [J].
Froes, FH ;
Senkov, ON ;
Qazi, JO .
INTERNATIONAL MATERIALS REVIEWS, 2004, 49 (3-4) :227-245
[9]  
German R.M., 2009, POWDER INJECT MOLD I, V3, P4
[10]   Titanium sintering science: A review of atomic events during densification [J].
German, Randall M. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 89