Maximum likelihood estimation of a change-point for exponentially distributed random variables

被引:28
作者
Fotopoulos, S
Jandhyala, V
机构
[1] Washington State Univ, Coll Business & Econ, Dept Management & Decis Sci, Pullman, WA 99164 USA
[2] Washington State Univ, Dept Pure & Appl Math, Pullman, WA 99164 USA
关键词
random walks; Weiner-Hopf factorization; Laplace transform;
D O I
10.1016/S0167-7152(00)00185-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the unknown change-point in the parameter of a sequence of independent and exponentially distributed random variables. An exact expression for the asymptotic distribution of the maximum likelihood estimate of the change-point is derived. The analysis is based on the application of Weiner-Hopf factorization identity involving the distribution of ascending and descending ladder heights, and the renewal measure in random walks. (C) 2001 Elsevier Science B.V. All rights reserved MSC. 62F12; 60J15.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 11 条
[1]   ESTIMATING CURRENT MEAN OF NORMAL-DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN TIME [J].
CHERNOFF, H ;
ZACKS, S .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03) :999-&
[2]  
Csorgo M, 1997, LIMIT THEOREMS CHANG
[3]  
Gut, 1988, STOPPED RANDOM WALKS
[4]   THE LIKELIHOOD RATIO TEST FOR THE CHANGE POINT PROBLEM FOR EXPONENTIALLY DISTRIBUTED RANDOM-VARIABLES [J].
HACCOU, P ;
MEELIS, E ;
VANDEGEER, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 27 (01) :121-139
[5]  
HINKLEY DV, 1972, BIOMETRIKA, V59, P509, DOI 10.2307/2334802
[6]  
HINKLEY DV, 1970, BIOMETRIKA, V57, P1
[7]  
Jandhyala VK, 1999, BIOMETRIKA, V86, P129
[8]  
JANDHYALA VK, 2000, SANKYA A
[9]  
SHIRYAEV A. N., 1963, Theory of Probability Its Applications, V8, P22, DOI [DOI 10.1137/1108002, 10.1137/1108002]
[10]  
Stoyan D., 1976, COMP METHODS QUEUES