Thermoelectric Effect in Quantum Cascade Lasers

被引:10
作者
Escarra, Matthew D. [1 ]
Benz, Alexander [1 ,2 ]
Bhatt, Anjali M. [1 ,3 ]
Hoffman, Anthony J. [1 ]
Wang, Xiaojun [4 ]
Fan, Jen-Yu [4 ]
Gmachl, Claire [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Vienna Univ Technol, Photon Inst, A-1040 Vienna, Austria
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] AdTech Opt Inc, City Of Industry, CA 91748 USA
来源
IEEE PHOTONICS JOURNAL | 2010年 / 2卷 / 03期
关键词
Quantum cascade lasers; thermoelectric effect; superlattice devices; optoelectronic materials; thermal modeling; HIGH-PERFORMANCE; TRANSPORT;
D O I
10.1109/JPHOT.2010.2050304
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The choice of polarity of operation in a quantum cascade (QC) laser is made at the beginning of every QC laser design and growth, yet little work has been done to ascertain any performance benefits of one polarity versus the other. In this paper, we compare two QC lasers of the same design, differentiated only by the reversing of the growth order of the heterostructure layers in the laser core, which results in opposite polarities of operation. Analysis is performed through continuous wave (CW) and pulsed threshold current measurements to observe the change in active core temperature with input power. A thermoelectric effect is observed, where the direction of current flow improves thermal transport in negative polarity lasers (electron flow toward the heat sink) over positive polarity (electron flow away from the heat sink), leading to a maximum observed reduction in laser core heating of 10.0 +/- 5.5 K for a thermal load of 7.2 kW/cm(2) in CW operation.
引用
收藏
页码:500 / 509
页数:10
相关论文
共 20 条
[1]  
Adachi S., 2004, Handbook on Physical Properties of Semiconductors, V1-3
[2]   HIGH-ELECTRON-MOBILITY IN (INAS)N(GAAS)N SHORT-PERIOD SUPERLATTICES GROWN BY MOVPE FOR HIGH-ELECTRON-MOBILITY TRANSISTOR STRUCTURE [J].
ANDRE, JP ;
DESWARTE, A ;
LUGAGNEDELPON, E ;
VOISIN, P ;
RUTERANA, P .
JOURNAL OF ELECTRONIC MATERIALS, 1994, 23 (02) :141-146
[3]   Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy [J].
Escarra, Matthew D. ;
Hoffman, Anthony J. ;
Franz, Kale J. ;
Howard, Scott S. ;
Cendejas, Richard ;
Wang, Xiaojun ;
Fan, Jen-Yu ;
Gmachl, Claire .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[4]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[5]   Bidirectional semiconductor laser [J].
Gmachl, C ;
Tredicucci, A ;
Sivco, DL ;
Hutchinson, AL ;
Capasso, F ;
Cho, AY .
SCIENCE, 1999, 286 (5440) :749-752
[6]   Formation of electric-field domains in a system of multiple finite superlattices [J].
Hosoda, M. ;
Noma, S. .
PHYSICAL REVIEW B, 2007, 75 (20)
[7]   High-performance quantum cascade lasers: Optimized design through waveguide and thermal Modeling [J].
Howard, Scott S. ;
Liu, Zhijun ;
Wasserman, Daniel ;
Hoffman, Anthony J. ;
Ko, Tiffany S. ;
Gmachl, Claire E. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (05) :1054-1064
[8]   Low-threshold injectorless quantum cascade laser with four material compositions [J].
Katz, S. ;
Boehm, G. ;
Amann, M. -C. .
ELECTRONICS LETTERS, 2008, 44 (09) :580-+
[9]   High-performance injectorless quantum cascade lasers emitting below 6 μm [J].
Katz, Simeon ;
Vizbaras, Augustinas ;
Boehm, Gerhard ;
Amann, Markus-Christian .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[10]   186 K operation of terahertz quantum-cascade lasers based on a diagonal design [J].
Kumar, Sushil ;
Hu, Qing ;
Reno, John L. .
APPLIED PHYSICS LETTERS, 2009, 94 (13)