Analogue of slant Hankel operators on the Lebesgue space of n-torus

被引:7
作者
Datt, Gopal [1 ]
Gupta, Bhawna Bansal [2 ]
机构
[1] Univ Delhi, PGDAV Coll, Dept Math, New Delhi 110065, India
[2] Univ Delhi, Dept Math, Miranda House, New Delhi 110007, India
关键词
Hankel operator; kth-order slant Hankel operator; Lebesgue space; Slant Hankel operator; Slant Toeplitz operator;
D O I
10.1007/s43036-021-00162-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the multivariate analogue of slant Hankel operator on L-2 (T-n), (n >= 1, a natural number), the Lebesgue space of square integrable functions defined on Tn, where T is the unit circle, is introduced. Various characterizations are obtained for a bounded operator on L-2(T-n) to be a kth- order slant Hankel operator (k >= 2, a fixed integer).
引用
收藏
页数:15
相关论文
共 11 条
[1]  
Arora SC, 2006, ARCH MATH-BRNO, V42, P125
[2]   A NEW NECESSARY CONDITION FOR THE HYPONORMALITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE [J].
Cuckovic, Zeljko ;
Curto, Raul E. .
JOURNAL OF OPERATOR THEORY, 2018, 79 (02) :287-300
[3]  
Datt G, 2020, HOKKAIDO MATH J, V49, P363
[4]   Compression of Slant Toeplitz Operators on the Hardy Space ofn-Dimensional Torus [J].
Datt, Gopal ;
Pandey, Shesh Kumar .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) :997-1018
[5]  
Halmos P. R., 1967, HILBERT SPACE PROBLE
[6]   Operators That Commute with Slant Toeplitz Operators [J].
Ho, Mark C. ;
Wong, Mu Ming .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2008, (01)
[7]  
Ho MC, 1996, INDIANA U MATH J, V45, P843
[8]  
Peller V.V., 1998, Math. Sci. Res. Inst. Publ., V33, P65
[9]  
Stein EM., 1971, Introduction to Fourier Analysis on Euclidean Spaces
[10]   ORTHOGONAL MULTIWAVELETS WITH VANISHING MOMENTS [J].
STRANG, G ;
STRELA, V .
OPTICAL ENGINEERING, 1994, 33 (07) :2104-2107