SABER: Data-Driven Motion Planner for Autonomously Navigating Heterogeneous Robots

被引:9
作者
Schperberg, Alexander [1 ]
Tsuei, Stephanie [2 ]
Soatto, Stefano [2 ]
Hong, Dennis [1 ]
机构
[1] Univ Calif Los Angeles, Robot & Mech Lab, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, UCLA Vis Lab, Dept Comp Sci, Los Angeles, CA 90095 USA
关键词
Motion and path planning; multi-robot systems; deep learning methods; optimization and optimal control; SLAM;
D O I
10.1109/LRA.2021.3103054
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal while avoiding obstacles in uncertain environments. First, we use stochastic model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints. Second, recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution, which are trained on uncertainty outputs of various simultaneous localization and mapping algorithms. When two or more robots are in communication range, these uncertainties are then updated using a distributed Kalman filtering approach. Lastly, a Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal. Our complete methods are demonstrated on a ground and aerial robot simultaneously (code available at: https://github.com/AlexS28/SABER).
引用
收藏
页码:8086 / 8093
页数:8
相关论文
共 25 条
[11]  
Gammell JD, 2014, IEEE INT C INT ROBOT, P2997, DOI 10.1109/IROS.2014.6942976
[12]   Improved techniques for grid mapping with Rao-Blackwellized particle filters [J].
Grisetti, Giorgio ;
Stachniss, Cyrill ;
Burgard, Wolfram .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (01) :34-46
[13]   Toward reliable off road autonomous vehicles operating in challenging environments [J].
Kelly, Alonzo ;
Stentz, Anthony ;
Amidi, Omead ;
Bode, Mike ;
Bradley, David ;
Diaz-Calderon, Antonio ;
Happold, Mike ;
Herman, Herman ;
Mandelbaum, Robert ;
Pilarski, Tom ;
Rander, Pete ;
Thayer, Scott ;
Vallidis, Nick ;
Warner, Randy .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2006, 25 (5-6) :449-483
[14]  
Kew J. Chase, ALGORITHMIC FDN ROBO, V2021, P73
[15]   MOTION PLANNING WITH 6 DEGREES OF FREEDOM BY MULTISTRATEGIC BIDIRECTIONAL HEURISTIC FREE-SPACE ENUMERATION [J].
KONDO, K .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (03) :267-277
[16]  
Mnih V, 2013, ABS13125602 CORR
[17]  
Rawlings J. B., 2017, MODEL PREDICTIVE CON, V2nd, P95
[18]  
Roumeliotis S. I., 2000, THESIS U SO CAL
[19]   Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for Online Collision Avoidance [J].
Schperberg, Alexander ;
Chen, Kenny ;
Tsuei, Stephanie ;
Jewett, Michael ;
Hooks, Joshua ;
Soatto, Stefano ;
Mehta, Ankur ;
Hong, Dennis .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :5730-5737
[20]   Risk-Aware Motion Planning for a Limbed Robot with Stochastic Gripping Forces Using Nonlinear Programming [J].
Shirai, Yuki ;
Lin, Xuan ;
Tanaka, Yusuke ;
Mehta, Ankur ;
Hong, Dennis .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :4994-5001