How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

被引:83
作者
Ozkan, A. [1 ,2 ]
Dufour, T. [1 ]
Bogaerts, A. [2 ]
Reniers, F. [1 ]
机构
[1] Univ Libre Bruxelles, Chim Analyt & Chim Interfaces CHANI, Campus Plaine,Batiment A,CP255,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Antwerp, Res Grp PLASMANT, Univ Pl 1, B-2610 Antwerp, Belgium
关键词
CO2; conversion; atmospheric plasma; flowing DBD; dielectric material; dielectric thickness; filamentary discharge; electrical characterization; DISCHARGE PLASMA; CARBON-DIOXIDE; ATMOSPHERIC-PRESSURE; ENERGY EFFICIENCY; METHANE; AIR; DECOMPOSITION; EXCITATION; CAPTURE; REACTOR;
D O I
10.1088/0963-0252/25/4/045016
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]   Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges [J].
Aerts, Robby ;
Martens, Tom ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23257-23273
[3]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[4]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[5]   CO and byproduct formation during CO2 reduction in dielectric barrier discharges [J].
Brehmer, F. ;
Welzel, S. ;
van de Sanden, M. C. M. ;
Engeln, R. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (12)
[6]  
Chen L-Y, 2004, MRS P 2004
[7]   Dielectric Barrier Discharge Plasma Actuators for Flow Control [J].
Corke, Thomas C. ;
Enloe, C. Lon ;
Wilkinson, Stephen P. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :505-529
[8]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[9]   Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control [J].
Forte, M. ;
Jolibois, J. ;
Pons, J. ;
Moreau, E. ;
Touchard, G. ;
Cazalens, M. .
EXPERIMENTS IN FLUIDS, 2007, 43 (06) :917-928
[10]   Properties of dielectric barrier discharges in extended coplanar electrode systems [J].
Gibalov, VI ;
Pietsch, GJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (15) :2093-2100