Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions

被引:206
作者
Matsumoto, Yasumichi [1 ,2 ]
Koinuma, Michio [1 ,2 ]
Kim, Su Yeon [3 ]
Watanabe, Yusuke [1 ]
Taniguchi, Takaaki [1 ,2 ]
Hatakeyama, Kazuto [1 ]
Tateishi, Hikaru [1 ]
Ida, Shintaro [4 ]
机构
[1] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan
[2] JST, CREST, Chiyoda Ku, Tokyo 1020075, Japan
[3] Ewha Womans Univ, Coll Nat Sci, Dept Chem & Nano Sci, CINBM, Seoul 120750, South Korea
[4] Kyushu Univ, Fac Engn, Dept Appl Chem, Nishi Ku, Fukuoka 8190395, Japan
关键词
graphene oxide; nanosheet; thin film; photoreduction; photopatterning; conductive atomic force microscopy; PHOTOCATALYTIC REDUCTION; RAMAN-SPECTROSCOPY; THERMAL REDUCTION; SINGLE-LAYER; GRAPHITE; FILMS; TRANSPARENT; PHASE; NANOPARTICLES; SHEETS;
D O I
10.1021/am100900q
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene oxide (GO) nanosheets were reduced by UV irradiation in H-2 or N-2 under mild conditions (at room temperature) without a photocatalyst. Photoreduction proceeded even in an aqueous suspension of nanosheets. The GO nanosheets reduced by this method were analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. It was found that epoxy groups attached to the interiors of aromatic domains of the GO nanosheet were destroyed during UV irradiation to form relatively large sp(2) islands resulting in a high conductivity. I-V curves were measured by conductive atomic force microscopy (AFM; perpendicular to a single nanosheet) and a two-electrode system (parallel to the nanosheet). They revealed that photoreduced GO nanosheets have high conductivities, whereas nonreduced GO nanosheets are nearly insulating. Ag+ adsorbed on GO nanosheets promoted the photoreduction. This photoreduction method was very useful for photopatterning a conducting section of micrometer size on insulating GO. The developed photoreduction process based on a photoreaction will extend the applications of GO to many fields because it can be performed in mild conditions without a photocatalyst.
引用
收藏
页码:3461 / 3466
页数:6
相关论文
共 56 条
[1]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[2]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[3]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519
[4]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[5]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[6]   Graphene Nanomesh by ZnO Nanorod Photocatalysts [J].
Akhavan, Omid .
ACS NANO, 2010, 4 (07) :4174-4180
[7]   Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition [J].
An, Sung Jin ;
Zhu, Yanwu ;
Lee, Sun Hwa ;
Stoller, Meryl D. ;
Emilsson, Tryggvi ;
Park, Sungjin ;
Velamakanni, Aruna ;
An, Jinho ;
Ruoff, Rodney S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (08) :1259-1263
[8]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[9]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[10]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196