Diversification of aminoacyl-tRNA synthetase activities via genomic duplication

被引:9
作者
Krahn, Natalie [1 ]
Soell, Dieter [1 ,2 ]
Vargas-Rodriguez, Oscar [1 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT USA
基金
美国国家科学基金会;
关键词
gene duplication; aminoacyl-tRNA synthetase; evolution; translation; tRNA noncanonical functions; genetic code; NITRIC-OXIDE SYNTHASE; ELONGATION-FACTOR-P; GENETIC-CODE; CYCLODIPEPTIDE SYNTHASES; ASPARAGINE SYNTHETASE; ACID BIOSYNTHESIS; CRYSTAL-STRUCTURE; PROTEIN; RESISTANCE; COMPLEX;
D O I
10.3389/fphys.2022.983245
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
引用
收藏
页数:9
相关论文
共 94 条
[1]   Clades of huge phages from across Earth's ecosystems [J].
Al-Shayeb, Basem ;
Sachdeva, Rohan ;
Chen, Lin-Xing ;
Ward, Fred ;
Munk, Patrick ;
Devoto, Audra ;
Castelle, Cindy J. ;
Olm, Matthew R. ;
Bouma-Gregson, Keith ;
Amano, Yuki ;
He, Christine ;
Meheust, Raphael ;
Brooks, Brandon ;
Thomas, Alex ;
Levy, Adi ;
Matheus-Carnevali, Paula ;
Sun, Christine ;
Goltsman, Daniela S. A. ;
Borton, Mikayla A. ;
Sharrar, Allison ;
Jaffe, Alexander L. ;
Nelson, Tara C. ;
Kantor, Rose ;
Keren, Ray ;
Lane, Katherine R. ;
Farag, Ibrahim F. ;
Lei, Shufei ;
Finstad, Kari ;
Amundson, Ronald ;
Anantharaman, Karthik ;
Zhou, Jinglie ;
Probst, Alexander J. ;
Power, Mary E. ;
Tringe, Susannah G. ;
Li, Wen-Jun ;
Wrighton, Kelly ;
Harrison, Sue ;
Morowitz, Michael ;
Relman, David A. ;
Doudna, Jennifer A. ;
Lehours, Anne-Catherine ;
Warren, Lesley ;
Cate, Jamie H. D. ;
Santini, Joanne M. ;
Banfield, Jillian F. .
NATURE, 2020, 578 (7795) :425-+
[2]   Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress [J].
Angel Rubio, Miguel ;
Napolitano, Mauro ;
Ochoa de Alda, Jesus A. G. ;
Santamaria-Gomez, Javier ;
Patterson, Carl J. ;
Foster, Andrew W. ;
Bru-Martinez, Roque ;
Robinson, Nigel J. ;
Luque, Ignacio .
NUCLEIC ACIDS RESEARCH, 2015, 43 (20) :9905-9917
[3]   Thermus thermophilus:: A link in evolution of the tRNA-dependent amino acid amidation pathways [J].
Becker, HD ;
Kern, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12832-12837
[4]   A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon [J].
Blaise, M ;
Becker, HD ;
Keith, G ;
Cambillau, C ;
Lapointe, J ;
Giegé, R ;
Kern, D .
NUCLEIC ACIDS RESEARCH, 2004, 32 (09) :2768-2775
[5]  
BLANQUET S, 1983, MOL CELL BIOCHEM, V52, P3
[6]   COMPARISON OF THE ENZYMATIC-PROPERTIES OF THE 2 ESCHERICHIA-COLI LYSYL-TRANSFER-RNA SYNTHETASE SPECIES [J].
BREVET, A ;
CHEN, J ;
LEVEQUE, F ;
BLANQUET, S ;
PLATEAU, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14439-14444
[7]   Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens [J].
Brown, JR ;
Gentry, D ;
Becker, JA ;
Ingraham, K ;
Holmes, DJ ;
Stanhope, MJ .
EMBO REPORTS, 2003, 4 (07) :692-698
[8]   Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase [J].
Buddha, MR ;
Tao, T ;
Parry, RJ ;
Crane, BR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (48) :49567-49570
[9]   An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans [J].
Buddha, MR ;
Keery, KM ;
Crane, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (45) :15881-15886
[10]   Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations [J].
Castelle, Cindy J. ;
Brown, Christopher T. ;
Anantharaman, Karthik ;
Probst, Alexander J. ;
Huang, Raven H. ;
Banfield, Jillian F. .
NATURE REVIEWS MICROBIOLOGY, 2018, 16 (10) :629-645