DIFFERENCE-QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO-PDE

被引:19
作者
Biswas, Imran H. [1 ]
Jakobsen, Espen R. [2 ]
Karlsen, Kenneth H. [3 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Bangalore 560065, Karnataka, India
[2] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[3] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway
关键词
integro-partial differential equation; viscosity solution; finite difference scheme; error estimate; stochastic optimal control; Levy process; Bellman equation; MONOTONE-APPROXIMATION SCHEMES; VISCOSITY SOLUTIONS; BELLMAN EQUATIONS; JUMP-DIFFUSION; NUMERICAL-METHODS; DIRICHLET PROBLEM; AMERICAN OPTIONS; ERROR-BOUNDS; CONVERGENCE;
D O I
10.1137/090761501
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Levy (jump-diffusion) processes. These equations are fully nonlinear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new "direct" discretizations of the nonlocal part of the equation that give rise to monotone schemes capable of handling singular Levy measures. Furthermore, we develop a new general theory for deriving error estimates for approximate solutions of integro-PDEs, which thereafter is applied to the proposed difference-quadrature schemes.
引用
收藏
页码:1110 / 1135
页数:26
相关论文
共 45 条
[1]  
Almendral A., 2007, APPL MATH FINANCE, V14, P131, DOI DOI 10.1080/13504860600724885
[2]   Accurate evaluation of European and American options under the CGMY process [J].
Almendral, Ariel ;
Oosterlee, Cornelis W. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :93-117
[3]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[4]  
[Anonymous], SIAM J CONTROL OPTIM
[5]  
[Anonymous], 1991, COMM PART DIFF EQS
[6]  
[Anonymous], 2003, Differ. Integr. Equ
[7]  
[Anonymous], APPL MATH
[8]  
[Anonymous], 1992, APPL MATH
[9]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[10]   On the Dirichlet problem for second-order elliptic integro-differential equations [J].
Barles, G. ;
Chasseigne, E. ;
Imbert, C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :213-246