On the 4-rank of the tame kernel K2(O) in positive definite terms

被引:18
作者
Conner, PE [1 ]
Hurrelbrink, J [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
4-rank of the tame kernel; quadratic number fields; unramified cyclic degree 4 extension; positive definite binary quadratic forms;
D O I
10.1006/jnth.2000.2626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is about the structure of the tame kernel K-2(C) for certain quadratic number fields. There has been recent progress in making explicit the 4-rank of the tame kernel of quadratic number fields and ev en in obtaining results about the 8-rank. The emphasis of this paper is to determine the 4-rank of the tame kernel in definite terms. Our characterizations are in terms of positive definite binary quadratic forms X-2 + 32Y(2), X-2 + 2pY(2), 2X(2) + pY(2) over Z. The results make numerical computations readily available, and the characterizations might generate some interest in "density results" concerning the 4-rank of tame kernels. (C) 2001 Academic Press.
引用
收藏
页码:263 / 282
页数:20
相关论文
共 17 条
[1]  
BARRUCAND P, 1969, J REINE ANGEW MATH, V238, P67
[2]   THE 2-SYLOW-SUBGROUP OF THE TAME KERNEL OF NUMBER-FIELDS [J].
BRAUCKMANN, B .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (02) :255-264
[3]   Tame and wild kernels of quadratic imaginary number fields [J].
Browkin, J ;
Gangl, H .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :291-305
[4]  
BROWKIN J, 1982, J REINE ANGEW MATH, V331, P104
[5]  
BROWKIN J, 1994, COMMUNICATION
[6]  
CONNER PE, 1995, ACTA ARITH, V73, P59
[7]   THE 4-RANK OF K2(O) [J].
CONNER, PE ;
HURRELBRINK, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (05) :932-960
[8]  
CONNER PE, 1988, SCR PURE MATH, V8
[9]  
CONNER PE, 1989, EXAMPLES QUADRATIC N
[10]  
Hurrelbrink J, 1998, J REINE ANGEW MATH, V499, P145