On a class of weak Tchebycheff systems

被引:90
作者
Costantini, P
Lyche, T
Manni, C
机构
[1] Univ Oslo, Inst Informat, N-0316 Oslo, Norway
[2] Univ Siena, Dipartimento Sci Matemat & Informat, I-53100 Siena, Italy
[3] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
[4] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
41A15; 41A63; 41A45; 65D07;
D O I
10.1007/s00211-005-0613-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the approximation power, the existence of a normalized B-basis and the structure of a degree-raising process for spaces of the form span < 1, x,..., x(n-2), u( x), v( x) >, requiring suitable assumptions on the functions u and v. The results about degree raising are detailed for special spaces of this form which have been recently introduced in the area of CAGD.
引用
收藏
页码:333 / 354
页数:22
相关论文
共 17 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]   Critical length for design purposes and extended Chebyshev spaces [J].
Carnicer, JM ;
Mainar, E ;
Peña, JM .
CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) :55-71
[3]   A class of Bezier-like curves [J].
Chen, QY ;
Wang, GZ .
COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) :29-39
[4]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[5]   Blossoming beyond extended Chebyshev spaces [J].
Goodman, T .
JOURNAL OF APPROXIMATION THEORY, 2001, 109 (01) :48-81
[6]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[7]  
Karlin S., 1968, Total Positivity
[8]  
KOCH PE, 1993, COMPUT S, V8, P173
[9]   GB-splines of arbitrary order [J].
Ksasov, BI ;
Sattayatham, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 104 (01) :63-88
[10]  
Lyche T, 1991, CURVES SURF, P255