Fractional conformable attractors with low fractality

被引:9
作者
Morales-Delgado, V. F. [1 ]
Gomez-Aguilar, J. F. [2 ]
Escobar-Jimenez, R. F. [3 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Tecnol Nacl Mexico CENIDET, Cuernavaca 62490, Morelos, Mexico
关键词
adomian decomposition method; chaos; fractional calculus; fractional conformable derivative; low-fractality; TIME; EQUATION; DERIVATIVES; CALCULUS; MODEL;
D O I
10.1002/mma.5146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we considered a fractional conformable derivative of Liouville-Caputo type of fractional-order =n-E, which contains a small perturbation E and positive integer n values between [0;1] to obtain the solutions of three different fractional conformable attractors (Chen's attractor, Genesio-Tesi's attractor, and Liu's attractor). The fractional conformable Adomian decomposition method is applied to obtain an expansion of the fractional conformable derivative in E=n-. The solutions of the fractional chaotic systems are calculated in the form of convergent series. We investigate the dynamics of these attractors by numerical simulations for different fractional orders values and parameter E.
引用
收藏
页码:6378 / 6400
页数:23
相关论文
共 50 条
[2]  
[Anonymous], 2002, APPL MATH COMPT
[3]  
[Anonymous], ALEX ENG J
[4]  
Atangana A, 2014, BIOMED RES INT, V1, P1
[5]   Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter: Beta-Derivative [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
COMPLEXITY, 2016, 21 (06) :442-451
[6]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[7]   A shifted Legendre spectral method for fractional-order multi-point boundary value problems [J].
Bhrawy, Ali H. ;
Al-Shomrani, Mohammed M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system [J].
Danca, Marius-F ;
Feckan, Michal ;
Kuznetsov, Nikolay V. ;
Chen, Guanrong .
NONLINEAR DYNAMICS, 2018, 91 (04) :2523-2540
[10]  
Ding AW., 2017, EURO PHY J PLUS, V132, P1