A nonlinear fractional Rayleigh-Stokes equation under nonlocal integral conditions

被引:3
作者
Nguyen Hoang Luc [1 ,2 ,3 ]
Le Dinh Long [3 ]
Ho Thi Kim Van [3 ]
Van Thinh Nguyen [4 ]
机构
[1] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Vietnam
[4] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional Rayleigh-Stokes equation; Ill-posed problem; Regularization; Existence; Uniqueness; Convergence estimation; 2ND-GRADE FLUID; SPACE; TERM;
D O I
10.1186/s13662-021-03545-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional nonlinear Rayleigh-Stokes equation under nonlocal integral conditions, and the existence and uniqueness of the mild solution to our problem are considered. The ill-posedness of the mild solution to the problem recovering the initial value is also investigated. To tackle the ill-posedness, a regularized solution is constructed by the Fourier truncation method, and the convergence rate to the exact solution of this method is demonstrated.
引用
收藏
页数:22
相关论文
共 28 条
[1]   Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space [J].
Abdeljawad, Thabet ;
Agarwal, Ravi P. ;
Karapinar, Erdal ;
Kumari, P. Sumati .
SYMMETRY-BASEL, 2019, 11 (05)
[2]  
Abdelouaheb A., 2021, RESULTS NONLINEAR AN, V4, P77, DOI [10.53006/rna.865900, DOI 10.53006/RNA.865900]
[3]   A UNIQUE WEAK SOLUTION FOR A KIND OF COUPLED SYSTEM OF FRACTIONAL SCHRODINGER EQUATIONS [J].
Abdolrazaghi, Fatemeh ;
Razani, Abdolrahman .
OPUSCULA MATHEMATICA, 2020, 40 (03) :313-322
[4]  
Adiguzel R.S., 2021, APPL COMPUT MATH-BAK, V20
[5]  
Afshari H., 2015, Electron. J. Differ. Equ, V2015, DOI [10.1186/s13662-015-0634-0, DOI 10.1186/S13662-015-0634-0]
[6]   Extended Riemann-Liouville type fractional derivative operator with applications [J].
Agarwal, P. ;
Nieto, Juan J. ;
Luo, M. -J. .
OPEN MATHEMATICS, 2017, 15 :1667-1681
[7]   A Solution for Volterra Fractional Integral Equations by Hybrid Contractions [J].
Alqahtani, Badr ;
Aydi, Hassen ;
Karapinar, Erdal ;
Rakocevic, Vladimir .
MATHEMATICS, 2019, 7 (08)
[8]   Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise [J].
Anh Triet Nguyen ;
Vu Cam Hoan Luu ;
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Van Thinh Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) :5593-5601
[9]   Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator [J].
Arendt, W. ;
ter Elst, A. F. M. ;
Warma, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) :1-24
[10]  
Baitiche Z., 2020, Results in Nonlinear Analysis, V3, P167