Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation

被引:63
作者
Pissarra, Luisa S. [1 ]
Farinha, Carlos M. [1 ,2 ]
Xu, Zhe [3 ]
Schmidt, Andre [2 ]
Thibodeau, Patrick H. [4 ]
Cai, Zhiwei [3 ]
Thomas, Philip J. [4 ]
Sheppard, David N. [3 ]
Amaral, Margaricla D. [1 ,2 ]
机构
[1] Univ Lisbon, Fac Sci, Dept Chem & Biochem, P-1749016 Lisbon, Portugal
[2] NIH, Ctr Human Gent, P-1649016 Lisbon, Portugal
[3] Univ Bristol, Sch Med Sci, Dept Physiol & Pharmacol, Bristol BS8 1TD, Avon, England
[4] Univ Texas SW Med Ctr Dallas, Dept Physiol, Dallas, TX 75390 USA
来源
CHEMISTRY & BIOLOGY | 2008年 / 15卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/j.chembiol.2007.11.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) Cl- channel. F508del, the most frequent CF-causing mutation, disrupts both the processing and function of CFTR. Recently, the crystal structure of the first nucleotide-binding domain of CFTR bearing F508del (F508del-NBD1) was elucidated. Although F508del-NBD1 shows only minor conformational changes relative to that of wild-type NBD1, additional mutations (F494N/Q637R or F429S/F494N/Q637R) were required for domain solubility and crystallization. Here we show that these solubilizing mutations in cis with F508del partially rescue the trafficking defect of full-length F508del-CFTR and attenuate its gating defect. We interpret these data to suggest that the solubilizing mutations utilized to facilitate F508del-NBD1 production also assist folding of full-length F508del-CFTR protein. Thus, the available crystal structure of F508del-NBD1 might correspond to a partially corrected conformation of this domain.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 41 条
[1]   Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology:: Structural model of the nucleotide binding domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) [J].
Bianchet, MA ;
Ko, YH ;
Amzel, LM ;
Pedersen, PL .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1997, 29 (05) :503-524
[2]  
Brown CR, 1996, CELL STRESS CHAPERON, V1, P117, DOI 10.1379/1466-1268(1996)001<0117:CCCTMP>2.3.CO
[3]  
2
[4]  
Cai ZW, 2007, ADV MOL CEL, V38, P109, DOI 10.1016/S1569-2558(06)38005-8
[5]   Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel [J].
Cai, ZW ;
Taddei, A ;
Sheppard, DN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (04) :1970-1977
[6]   Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH2-terminal nucleotide binding domain [J].
Chan, KM ;
Csanády, L ;
Seto-Young, D ;
Nairn, AC ;
Gadsby, DC .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (02) :163-180
[7]   Removal of multiple arginine-framed trafficking signals overcomes misprocessing of ΔF508 CFTR present in most patients with cystic fibrosis [J].
Chang, XB ;
Cui, LY ;
Hou, YX ;
Jensen, TJ ;
Aleksandrov, AA ;
Mengos, A ;
Riordan, JR .
MOLECULAR CELL, 1999, 4 (01) :137-142
[8]  
CHANG XB, 1994, J BIOL CHEM, V269, P18572
[9]   The ΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator [J].
Chen, EY ;
Bartlett, MC ;
Loo, TW ;
Clarke, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (38) :39620-39627
[10]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834