Medical Entity Recognition Based on BiLSTM with Knowledge Graph and Attention Mechanism

被引:4
作者
Wang, Qiaoling [1 ]
Liu, Yu [1 ]
Gu, Jinguang [1 ]
Fu, Haidong [1 ]
机构
[1] Wuhan Univ Sci & Technol, Dept Comp Sci & Technol, Wuhan, Peoples R China
来源
2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Internet medical consultation text; named entity recognition; deep neural network; attention mechanism; knowledge graph;
D O I
10.1109/ICoIAS53694.2021.00035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considering the characteristics of non-standard expression in Internet text, some information extraction models have employed knowledge graphs of different areas to improve entity recognition performance. However, these existing models merely use background knowledge in a single step, which leads to insufficient use of additional clues in the knowledge graph. Aiming at the above problems, this paper proposes a new entity recognition model based on BiLSTM with knowledge graph and attention mechanism and applies the model to extract medical entities from Internet medical consultation text. The model extracts the conceptual features and candidate knowledge sets from the medical knowledge graph. The encoded concept features are embedded into the input of BiLSTM to enhance the semantic expression of words. Furthermore, the candidate knowledge sets are integrated into the attention mechanism to capture the important information in the knowledge graph and context. To verify the effectiveness of the model, we extracted medical named entities from the consultation text of Haodafu. Experimental results show that the proposed model can effectively improve the performance of entity recognition tasks.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [41] Named entity recognition for Chinese judgment documents based on BiLSTM and CRF
    Huang, Wenming
    Hu, Dengrui
    Deng, Zhenrong
    Nie, Jianyun
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2020, 2020 (01)
  • [42] Named Entity Recognition based on a Graph Structure
    Munoz, David
    Perez, Fernando
    Pinto, David
    COMPUTACION Y SISTEMAS, 2020, 24 (02): : 553 - 563
  • [43] A Graph Attention Model for Dictionary-Guided Named Entity Recognition
    Lou, Yinxia
    Qian, Tao
    Li, Fei
    Ji, Donghong
    IEEE ACCESS, 2020, 8 : 71584 - 71592
  • [44] Named entity recognition for Chinese judgment documents based on BiLSTM and CRF
    Wenming Huang
    Dengrui Hu
    Zhenrong Deng
    Jianyun Nie
    EURASIP Journal on Image and Video Processing, 2020
  • [45] A Residual BiLSTM Model for Named Entity Recognition
    Yang, Gang
    Xu, Hongzhe
    IEEE ACCESS, 2020, 8 : 227710 - 227718
  • [46] A self-attention based neural architecture for Chinese medical named entity recognition
    Wan, Qian
    Liu, Jie
    Wei, Luona
    Ji, Bin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3498 - 3511
  • [47] Heterogeneous Graph Neural Network Knowledge Graph Completion Model Based on Improved Attention Mechanism
    Shi, Junkang
    Li, Ming
    Zhao, Jing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 423 - 434
  • [48] Enhancing Immoral Post Detection on Social Networks Using Knowledge Graph and Attention-Based BiLSTM Framework
    Saqia, Bibi
    Khan, Khairullah
    Rahman, Atta Ur
    Khan, Sajid Ullah
    Alkhowaiter, Mohammed
    Khan, Wahab
    Ullah, Ashraf
    IEEE ACCESS, 2024, 12 : 178345 - 178361
  • [49] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Li, Luqi
    Zhao, Jie
    Hou, Li
    Zhai, Yunkai
    Shi, Jinming
    Cui, Fangfang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [50] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Luqi Li
    Jie Zhao
    Li Hou
    Yunkai Zhai
    Jinming Shi
    Fangfang Cui
    BMC Medical Informatics and Decision Making, 19