Algebraic decoding of (71,36,11), (79,40,15), and (97,49,15) quadratic residue codes

被引:57
作者
Chang, YS [1 ]
Truong, TK
Reed, IS
Cheng, HY
Lee, CD
机构
[1] I Shou Univ, Dept Math Appl, Kaohsiung 840, Taiwan
[2] I Shou Univ, Coll Elect & Informat Engn, Kaohsiung 840, Taiwan
[3] Univ So Calif, Dept Elect Engn Syst, Los Angeles, CA 90089 USA
关键词
error-locator polynomial; inverse-free Berlekamp-Massey (BM) algorithm; quadratic residues (QRs); unknown syndromes;
D O I
10.1109/TCOMM.2003.816994
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, a new algebraic decoding method was proposed by Truong et al In this paper, three decoders for the quadratic residue codes with parameters (71, 36, 11), (79, 40, 15), and (97, 49, 15), which have not been decoded before, are developed by using the decoding scheme given by Truong et al To confirm our results, an exhaustive computer simulation was executed successfully.
引用
收藏
页码:1463 / 1473
页数:11
相关论文
共 18 条
[1]  
BLAHUT RE, 1908, THEORY PRACTICE ERRO
[2]  
CHEN X, 1994, P I ELECTR ENG, V141, P253
[3]   ALGEBRAIC DECODING OF THE (23,12,7) GOLAY CODE [J].
ELIA, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (01) :150-151
[4]   A NEW PROCEDURE FOR DECODING CYCLIC AND BCH CODES UP TO ACTUAL MINIMUM DISTANCE [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1364-1374
[5]  
GOLAY MJE, 1949, P IRE, V37, P67
[6]   ERROR DETECTING AND ERROR CORRECTING CODES [J].
HAMMING, RW .
BELL SYSTEM TECHNICAL JOURNAL, 1950, 29 (02) :147-160
[7]   Decoding the (47,24,11) quadratic residue code [J].
He, RH ;
Reed, IS ;
Truong, TK ;
Chen, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :1181-1186
[8]  
Prange E., 1958, TN58156 AIR FORC CAM
[9]  
Reed I. S., 1999, ERROR CONTROL CODING
[10]   ALGEBRAIC DECODING OF THE (32,16,8) QUADRATIC RESIDUE CODE [J].
REED, IS ;
YIN, XW ;
TRUONG, TK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :876-880