Distributed feedback 2.5-terahertz quantum cascade laser with high-power and single-mode emission

被引:1
作者
Luo, Jiawen [1 ]
Jiang, Tao [1 ]
Shen, Changle [1 ]
Wang, Xuemin [1 ]
Zhan, Zhiqiang [1 ]
Yu, Jian [1 ]
Zou, Ruijiao [1 ]
Li, Jia [1 ]
Zeng, Yong [1 ]
Wu, Weidong [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Sci & Technol Plasma Phys Lab, Mianyang, Sichuan, Peoples R China
关键词
terahertz; quantum cascade laser; gratings; TERAHERTZ; TEMPERATURE; OSCILLATOR; OPERATION;
D O I
10.1117/1.OE.59.2.026109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The 2.5-terahertz quantum cascade lasers (THz QCLs) based on first-order distributed feedback (DFB) Bragg grating are reported. The loss and threshold gain within different grating duty cycles are calculated according to the mode-coupling theory. The laser output power reaches up to record values of 34.1 mW in pulse mode and 23.4 mW in continuous wave mode at 15 K. The threshold current density is as low as 125 A/cm(2). The single-mode emission is achieved, and the side-mode suppression ratio is 12 dB. In addition, the device is bonded together with the other two DFB THz QCLs (2.9 and 3.0 THz) on a copper chip. The simultaneous different wavelength emissions with single mode are successfully realized. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:8
相关论文
共 35 条
[1]   High power quantum cascade lasers operating at λ≃87 and 130 μm [J].
Ajili, L ;
Scalari, G ;
Faist, J ;
Beere, H ;
Linfield, E ;
Ritchie, D ;
Davies, G .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :3986-3988
[2]   2.9 THz quantum cascade lasers operating up to 70 K in continuous wave [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Fowler, J ;
Linfield, EH ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1674-1676
[3]   New frontiers in quantum cascade lasers: high performance room temperature terahertz sources [J].
Belkin, Mikhail A. ;
Capasso, Federico .
PHYSICA SCRIPTA, 2015, 90 (11)
[4]  
Bulcha B. T., 2015, 2015 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), P1, DOI 10.1109/IRMMW-THz.2015.7327689
[5]  
Cao J C, 2012, SEMICONDUCTOR TERAHE
[6]   THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing [J].
Consolino, Luigi ;
Bartalini, Saverio ;
Beere, Harvey E. ;
Ritchie, David A. ;
Vitiello, Miriam Serena ;
De Natale, Paolo .
SENSORS, 2013, 13 (03) :3331-3340
[7]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[8]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[9]   Frequency Tunable sub-THz Gyrotron for Direct Measurements of Positronium Hyperfine Structure [J].
Fedotov, A. E. ;
Rozental, R. M. ;
Zotova, I. V. ;
Ginzburg, N. S. ;
Sergeev, A. S. ;
Tarakanov, V. P. ;
Glyavin, M. Yu. ;
Idehara, T. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2018, 39 (10) :975-983
[10]   Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation [J].
Fujita, Kazuue ;
Hitaka, Masahiro ;
Ito, Akio ;
Yamanishi, Masamichi ;
Dougakiuchi, Tatsuo ;
Edamura, Tadataka .
OPTICS EXPRESS, 2016, 24 (15) :16357-16365