Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries

被引:98
作者
Liang, Jianneng [1 ]
Sun, Yipeng [1 ]
Zhao, Yang [1 ]
Sun, Qian [1 ]
Luo, Jing [1 ]
Zhao, Feipeng [1 ]
Lin, Xiaoting [1 ]
Li, Xia [1 ]
Li, Ruying [1 ]
Zhang, Li [2 ]
Lu, Shigang [2 ]
Huang, Huan [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON, Canada
[2] China Automot Battery Res Inst Co Ltd, Beijing, Peoples R China
[3] Glabat Solid State Battery Inc, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LITHIUM-ION BATTERIES; ELECTROCHEMICAL STABILITY; SECONDARY BATTERIES; CATHODE MATERIALS; FABRICATION; MEMBRANE;
D O I
10.1039/c9ta08607b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state lithium batteries (ASSLBs) are promising energy storage devices for application in electric transportation and large-scale energy storage systems. Polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) are attractive solid-state electrolytes for ASSLBs due to their high ionic conductivity, light weight, and low cost. However, the low electrochemical oxidation potential window of PEO seriously restricts its implementation with high voltage cathodes for high-energy-density ASSLBs. Effective interfacial engineering between high voltage cathodes and SPEs can be a solution. Most of the reported conventional cathode protection approaches have been focused on building coating layers on active material particles, which, however, can be insufficient because the conductive carbon is able to accelerate the decomposition of SPEs. In this work, atomic layer deposition (ALD) coating on the electrode instead of active material particles realizes a unique method to protect the cathode/SPE interface. As a successful example, a thin ALD-derived lithium tantalate coating on the high-voltage LiCoO2 electrode demonstrated good compatibility with PEO-based SPEs, significantly enhancing the cycling performance of the ASSLBs. The inner mechanism is attributed to the fact that the protection of the conductive carbon/SPE interface helps reduce the electrochemical oxidation of PEO-based SPEs. This work shall give new insights for the interfacial engineering of high voltage cathodes and solid polymer electrolytes.
引用
收藏
页码:2769 / 2776
页数:8
相关论文
共 28 条
[1]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[2]   Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles [J].
Dokko, K ;
Horikoshi, S ;
Itoh, T ;
Nishizawa, M ;
Mohamedi, M ;
Uchida, I .
JOURNAL OF POWER SOURCES, 2000, 90 (01) :109-115
[3]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[4]   LiCoO2-MgO coaxial fibers:: co-electrospun fabrication, characterization and electrochemical properties [J].
Gu, Yuanxiang ;
Chen, Dairong ;
Jiao, Xiuling ;
Liu, Fangfang .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (18) :1769-1776
[5]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[6]  
Harry KJ, 2014, NAT MATER, V13, P69, DOI [10.1038/NMAT3793, 10.1038/nmat3793]
[7]   New Lithium Metal Polymer Solid State Battery for an Ultrahigh Energy: Nano C-LiFePO4 versus Nano Li1.2V3O8 [J].
Hovington, P. ;
Lagace, M. ;
Guerfi, A. ;
Bouchard, P. ;
Manger, A. ;
Julien, C. M. ;
Armand, M. ;
Zaghib, K. .
NANO LETTERS, 2015, 15 (04) :2671-2678
[8]   Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition [J].
Li, Xifei ;
Liu, Jian ;
Meng, Xiangbo ;
Tang, Yongji ;
Banis, Mohammad Norouzi ;
Yang, Jinli ;
Hu, Yuhai ;
Li, Ruying ;
Cai, Mei ;
Sun, Xueliang .
JOURNAL OF POWER SOURCES, 2014, 247 :57-69
[9]   Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries [J].
Liang, Jianneng ;
Luo, Jing ;
Sun, Qian ;
Yang, Xiaofei ;
Li, Ruying ;
Sun, Xueliang .
ENERGY STORAGE MATERIALS, 2019, 21 :308-334
[10]   Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition [J].
Liang, Jianneng ;
Sun, Qian ;
Zhao, Yang ;
Sun, Yipeng ;
Wang, Changhong ;
Li, Weihan ;
Li, Minsi ;
Wang, Dawei ;
Li, Xia ;
Liu, Yulong ;
Adair, Keegan ;
Li, Ruying ;
Zhang, Li ;
Yang, Rong ;
Lu, Shigang ;
Huang, Huan ;
Sun, Xueliang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) :23712-23719