Inference of ventricular activation properties from non-invasive electrocardiography

被引:23
作者
Camps, Julia [1 ]
Lawson, Brodie [2 ,3 ]
Drovandi, Christopher [2 ,3 ]
Minchole, Ana [1 ]
Wang, Zhinuo Jenny [1 ]
Grau, Vicente [4 ]
Burrage, Kevin [1 ,2 ]
Rodriguez, Blanca [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford OX1 3QD, Oxfrodshire, England
[2] Queensland Univ Technol QUT, Australian Res Council Ctr Excellence Math & Stat, Brisbane, Qld, Australia
[3] Queensland Univ Technol, QUT Ctr Data Sci CDS, Brisbane, Qld, Australia
[4] Univ Oxford, Inst Biomed Engn IBME, Oxford, England
基金
英国惠康基金; 澳大利亚研究理事会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”; 英国国家替代、减少和改良动物研究中心;
关键词
Electrocardiographic imaging; Bayesian inference; Digital twin; Electrocardiogram; FIBER ORIENTATION; HEART-FAILURE; VARIABILITY; MODELS; OPTIMIZATION; POPULATION; PARAMETERS; MORPHOLOGY; ALGORITHM;
D O I
10.1016/j.media.2021.102143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. Both electrocardiography and imaging are used for the clinical diagnosis of cardiac disease. The integration of multi-modal datasets through advanced computational methods could enable the development of the cardiac 'digital twin', a comprehensive virtual tool that mechanistically reveals a patient's heart condition from clinical data and simulates treatment outcomes. The adoption of cardiac digital twins requires the non-invasive efficient personalisation of the electrophysiological properties in cardiac models. This study develops new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography, cardiac magnetic resonance (CMR) imaging and modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical CMR imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac ventricular myocardial-mass volumes ranging from 74 cm 3 to 171 cm 3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties in sinus rhythm from non-invasive epicardial activation time maps and ECG recordings, achieving higher accuracy for the endocardial speed and sheet (transmural) speed than for the fibre or sheet-normal directed speeds. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:13
相关论文
共 57 条
[1]   Quantification of the QT variability related to HRV:: Robustness study facing automatic delineation and noise on the ECG [J].
Almeida, R ;
Pueyo, E ;
Martínez, JP ;
Rocha, AP ;
Laguna, P .
COMPUTERS IN CARDIOLOGY 2004, VOL 31, 2004, 31 :769-772
[2]  
[Anonymous], 2020, MATLAB 2020 9 9 0 15
[3]   Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models [J].
Arevalo, Hermenegild J. ;
Vadakkumpadan, Fijoy ;
Guallar, Eliseo ;
Jebb, Alexander ;
Malamas, Peter ;
Wu, Katherine C. ;
Trayanova, Natalia A. .
NATURE COMMUNICATIONS, 2016, 7
[4]   A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models [J].
Bayer, J. D. ;
Blake, R. C. ;
Plank, G. ;
Trayanova, N. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (10) :2243-2254
[5]   Effects of ECG Signal Processing on the Inverse Problem of Electrocardiography [J].
Bear, Laura R. ;
Dogrusoz, Y. Serinagaoglu ;
Svehlikova, J. ;
Coll-Font, J. ;
Good, W. ;
van Dam, E. ;
Macleod, R. ;
Abell, E. ;
Walton, R. ;
Coronel, R. ;
Haissaguerre, Michel ;
Dubois, R. .
2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
[6]   Additional diagnostic value of CMR to the European Society of Cardiology (ESC) position statement criteria in a large clinical population of patients with suspected myocarditis [J].
Biesbroek, P. Stefan ;
Hirsch, Alexander ;
Zweerink, Alwin ;
van de Ven, Peter M. ;
Beek, Aernout M. ;
Groenink, Maarten ;
Windhausen, Fons ;
Planken, R. Nils ;
van Rossum, Albert C. ;
Nijveldt, Robin .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2018, 19 (12) :1397-1407
[7]   Computationally guided personalized targeted ablation of persistent atrial fibrillation [J].
Boyle, Patrick M. ;
Zghaib, Tarek ;
Zahid, Sohail ;
Ali, Rheeda L. ;
Deng, Dongdong ;
Franceschi, William H. ;
Hakim, Joe B. ;
Murphy, Michael J. ;
Prakosa, Adityo ;
Zimmerman, Stefan L. ;
Ashikaga, Hiroshi ;
Marine, Joseph E. ;
Kolandaivelu, Aravindan ;
Nazarian, Saman ;
Spragg, David D. ;
Calkins, Hugh ;
Trayanova, Natalia A. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (11) :870-879
[8]   Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology [J].
Britton, Oliver J. ;
Bueno-Orovio, Alfonso ;
Van Ammel, Karel ;
Lu, Hua Rong ;
Towart, Rob ;
Gallacher, David J. ;
Rodriguez, Blanca .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (23) :E2098-E2105
[9]  
Bukhari H.A., 2019, 2019 COMPUTING CARDI, P1
[10]   Three Distinct Directions of Intramural Activation Reveal Nonuniform Side-to-Side Electrical Coupling of Ventricular Myocytes [J].
Caldwell, Bryan J. ;
Trew, Mark L. ;
Sands, Gregory B. ;
Hooks, Darren A. ;
LeGrice, Ian J. ;
Smaill, Bruce H. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2009, 2 (04) :433-440