OPERATOR APPROXIMATE BIPROJECTIVITY OF LOCALLY COMPACT QUANTUM GROUPS

被引:0
作者
Ghanei, Mohammad Reza [1 ,2 ]
Nemati, Mehdi [3 ]
机构
[1] Khansar Fac Math & Comp Sci, Dept Math, Khansar, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2018年 / 9卷 / 04期
关键词
locally compact quantum group; operator approximate biprojectivity; tensor product of compact quantum groups; VON-NEUMANN-ALGEBRAS; AMENABILITY;
D O I
10.1215/20088752-2017-0065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate a study of operator approximate biprojectivity for quantum group algebra L-1(G), where C is a locally compact quantum group. We show that if L-1(C) is operator approximately biprojective, then C is compact. We prove that if C is a compact quantum group and H is a non-Kac-type compact quantum group such that both L-1(G) and L-1(H) are operator approximately biprojective, then L-1(G) (circle times) over cap L-1(H) is operator approximately biprojective, but not operator biprojective.
引用
收藏
页码:514 / 524
页数:11
相关论文
共 12 条
[1]   GENERALIZED BIPROJECTIVITY AND BIFLATNESS OF ABSTRACT SEGAL ALGEBRAS [J].
Abtahi, Fatemeh .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) :107-117
[2]  
Aristov OY, 2004, CONTEMP MATH, V363, P15
[3]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[4]   Operator biflatness of the L1-algebras of compact quantum groups [J].
Caspers, Martijn ;
Lee, Hun Hee ;
Ricard, Eric .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 700 :235-244
[5]   OPERATOR BIPROJECTIVITY OF COMPACT QUANTUM GROUPS [J].
Daws, Matthew .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1349-1359
[6]  
Helemskii A. Ya., 1989, MATH ITS APPL SOVIET, V41
[7]  
Helemskii AY., 1972, MAT SBORNIK, V87, P122
[8]   Locally compact quantum groups in the Von Neumann algebraic setting [J].
Kustermans, J ;
Vaes, S .
MATHEMATICA SCANDINAVICA, 2003, 92 (01) :68-92
[9]   Locally compact quantum groups [J].
Kustermans, J ;
Vaes, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06) :837-934
[10]   Amenability of Hopf von Neumann algebras and Kac algebras [J].
Ruan, ZJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) :466-499