Synchronization analysis of complex-Variable chaotic systems with discontinuous unidirectional coupling

被引:7
作者
Zheng, Song [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
chaotic system; complex; complete synchronization; generalized synchronization; discontinuous coupling; GENERALIZED SYNCHRONIZATION; LAG SYNCHRONIZATION; NONLINEAR-SYSTEMS; DYNAMICS; PHASE;
D O I
10.1002/cplx.21693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with the problem of synchronization between two uncertain complex-variable chaotic systems with parameters perturbation and discontinuous unidirectional coupling. Based on the stability theory and comparison theorem of differential equations, some sufficient conditions for the complete synchronization and generalized synchronization are obtained. The theoretical results show that the two uncertain complex-variable chaotic systems with discontinuous unidirectional coupling can achieve synchronization if the time-average coupling strength is large enough. Finally, numerical examples are examined to illustrate the feasibility and effectiveness of the analytical results. (c) 2015 Wiley Periodicals, Inc. Complexity 21: 343-355, 2016
引用
收藏
页码:343 / 355
页数:13
相关论文
共 36 条
[1]   Global Chaos Synchronization of New Chaotic System using Linear Active Control [J].
Ahmad, Israr ;
Bin Saaban, Azizan ;
Ibrahim, Adyda Binti ;
Shahzad, Mohammad .
COMPLEXITY, 2015, 21 (01) :379-386
[2]   Generalized synchronization of chaos in autonomous systems [J].
Alvarez-Llamoza, O. ;
Cosenza, M. G. .
PHYSICAL REVIEW E, 2008, 78 (04)
[3]  
[Anonymous], 2009, APPL MATH COMPUT
[4]   Facilitated synchronization of complex networks through a discontinuous coupling strategy [J].
Chen, L. ;
Qiu, C. ;
Huang, H. B. ;
Qi, G. X. ;
Wang, H. J. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (04) :625-635
[5]   Synchronization with on-off coupling: Role of time scales in network dynamics [J].
Chen, L. ;
Qiu, C. ;
Huang, H. B. .
PHYSICAL REVIEW E, 2009, 79 (04)
[6]   Stability analysis of complex-valued impulsive system [J].
Fang, Tao ;
Sun, Jitao .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (08) :1152-1159
[7]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   Chaos synchronization and hyperchaos [J].
Kapitaniak, T. .
INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005), 2005, 23 :317-324
[10]   Chaos-hyperchaos transition [J].
Kapitaniak, T ;
Maistrenko, Y ;
Popovych, S .
PHYSICAL REVIEW E, 2000, 62 (02) :1972-1976