Estimation of stochastic signals under partially missing information

被引:3
作者
Torokhti, Anatoli [1 ]
Howlett, Phil [1 ]
Laga, Hamid [2 ]
机构
[1] Univ S Australia, Sch Inf Techn & Math Sci, CIAM, Adelaide, SA 5095, Australia
[2] Univ S Australia, Sch Inf Techn & Math Sci, PBRC, ACPFG, Adelaide, SA 5095, Australia
关键词
Estimation of missing signals; Least squares linear estimate; SEMI-BLIND IDENTIFICATION; MAXIMUM-LIKELIHOOD; COVARIANCE-MATRIX; WIENER FILTER; REDUCTION; MODEL; RECONSTRUCTION; REPRESENTATION; INTERPOLATION; TRANSFORM;
D O I
10.1016/j.sigpro.2014.12.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for the estimation of a large set of stochastic signals is proposed and justified. A specific restriction is that a priori information on the set of input-output signal pairs can only be obtained, in the form of covariance matrices (or their estimates), for a small subset of signal pairs. Nevertheless it is required to estimate each reference signal. We call this procedure signal estimation under partially missing information. The conceptual foundation of the proposed filter is an optimal least squares Hadamard-quadratic estimate of the incremental change to the observed signal pairs, extended by a natural linear interpolation to an estimated value for each intermediate reference signal. The new filter is expressed in terms of Moore-Penrose pseudo-inverse matrices and therefore is always well-defined. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 43 条
[1]  
[Anonymous], 2002, Adaptive Filter Theory
[2]  
[Anonymous], 1974, GEN INVERSES THEORY
[3]  
[Anonymous], ROBUST STAT, DOI [DOI 10.1002/MC.23308, DOI 10.1080/00140130701710994]
[4]  
[Anonymous], 2001, Polynomial Signal Processing
[5]  
Avdonin S., 2007, INT J APPL MATH COMP, V17, P101
[6]   Sampling and Interpolation Problems for Vector Valued Signals in the Paley-Wiener Spaces [J].
Avdonin, Sergel A. ;
Ivanov, Sergei A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) :5435-5441
[7]   New insights into the noise reduction Wiener filter [J].
Chen, Jingdong ;
Benesty, Jacob ;
Huang, Yiteng ;
Doclo, Simon .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2006, 14 (04) :1218-1234
[8]   CANONICAL PIECEWISE-LINEAR REPRESENTATION [J].
CHUA, LO ;
DENG, AC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (01) :101-111
[9]   Stochastic maximum likelihood methods for semi-blind channel estimation [J].
Cirpan, HA ;
Tsatsanis, MK .
IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (01) :21-24
[10]   Efficient nonlinear Wiener model identification using a complex-valued simplicial canonical piecewise linear filter [J].
Cousseau, Juan E. ;
Figueroa, Jose Luis ;
Werner, Stefan ;
Laakso, Timo I. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (05) :1780-1792