KNOWLEDGE REASONING FOR SEMANTIC SEGMENTATION

被引:10
作者
Chen, Shengjia [1 ]
Li, Zhixin [1 ]
Yang, Xiwei [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
中国国家自然科学基金;
关键词
semantic segmentation; knowledge reasoning; external knowledge;
D O I
10.1109/ICASSP39728.2021.9415022
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The convolution operation suffers from a limited receptive field, while global modeling is fundamental to dense prediction tasks, such as semantic segmentation. However, most existing methods treat the recognition of each region separately and overlook crucial global semantic relations between regions in one scene. These methods cannot segment the semantic regions accurately due to the lack of global-level supervision or guidance of external knowledge. To overcome the limitation of the traditional method, we propose a Knowledge Reasoning Net (KRNet) that consists of two crucial modules: (1) a prior knowledge mapping module that incorporates external knowledge by graph convolutional network to guide learning semantic representations and (2) a knowledge reasoning module that correlates these representations with a graph built on the external knowledge and explores their interactions via the knowledge reasoning. Experiments on Cityscapes and ADE datasets demonstrate the effectiveness of our proposed methods on semantic segmentation.
引用
收藏
页码:2340 / 2344
页数:5
相关论文
共 25 条
[1]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[2]   SPGNet: Semantic Prediction Guidance for Scene Parsing [J].
Cheng, Bowen ;
Chen, Liang-Chieh ;
Wei, Yunchao ;
Zhu, Yukun ;
Huang, Zilong ;
Xiong, Jinjun ;
Huang, Thomas S. ;
Hwu, Wen-Mei ;
Shi, Honghui .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :5217-5227
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]   Boundary-Aware Feature Propagation for Scene Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Liu, Ai Qun ;
Thalmann, Nadia Magnenat ;
Wang, Gang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6818-6828
[5]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Class-Wise Dynamic Graph Convolution for Semantic Segmentation [J].
Hu, Hanzhe ;
Ji, Deyi ;
Gan, Weihao ;
Bai, Shuai ;
Wu, Wei ;
Yan, Junjie .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :1-17
[8]   CCNet: Criss-Cross Attention for Semantic Segmentation [J].
Huang, Zilong ;
Wang, Xinggang ;
Huang, Lichao ;
Huang, Chang ;
Wei, Yunchao ;
Liu, Wenyu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :603-612
[9]   EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation [J].
Liu, Jianbo ;
He, Junjun ;
Zhang, Jiawei ;
Ren, Jimmy S. ;
Li, Hongsheng .
COMPUTER VISION - ECCV 2020, PT XXVI, 2020, 12371 :1-17
[10]  
Kipf TN, 2016, ARXIV