A POSITIVE SOLUTION FOR AN ASYMPTOTICALLY CUBIC QUASILINEAR SCHRODINGER EQUATION

被引:4
作者
Fang, Xiang-Dong [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; positive solution; asymptotically cubic; Nehari manifold; SCALAR FIELD-EQUATIONS; SOLITON-SOLUTIONS; EXISTENCE; STATES; UNIQUENESS;
D O I
10.3934/cpaa.2019004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following quasilinear Schrodinger equation -Delta u + V(x)u - Delta(u(2))u = q(x)g(u), x is an element of R-N,R- where N >= 1, 0 < q(x) <= lim(vertical bar x vertical bar ->infinity) q(x), g is an element of C (R+, R) and g(u)/u(3)-> 1, as u ->infinity. We establish the existence of a positive solution to this problem by using the method developed in Szulkin and Weth [27, 28].
引用
收藏
页码:51 / 64
页数:14
相关论文
共 31 条
[1]  
Adachi S, 2017, KODAI MATH J, V40, P117
[2]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[3]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[4]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   Existence of solutions to a class of asymptotically linear Schrodinger equations in Rn via the Pohozaev manifold [J].
Carriao, Paulo Cesar ;
Lehrer, Raquel ;
Miyagaki, Olimpio Hiroshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) :165-183
[7]   The effect of concentrating potentials in some singularly perturbed problems [J].
Cerami, G ;
Passaseo, D .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (03) :257-281
[8]  
Chang K., 2005, Methods in Nonlinear Analysis
[9]   A positive bound state for an asymptotically linear or superlinear Schrodinger equation [J].
Clapp, Monica ;
Maia, Liliane A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) :3173-3192
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226