Using satellite estimates of aboveground biomass to assess carbon stocks in a mixed-management, semi-deciduous tropical forest in the Yucatan Peninsula

被引:2
作者
George-Chacon, Stephanie P. [1 ]
Milodowski, David T. [2 ]
Dupuy, Juan Manuel [1 ]
Mas, Jean-Francois [3 ]
Williams, Mathew [2 ,4 ]
Castillo-Santiago, Miguel Angel [5 ]
Hernandez-Stefanoni, Jose Luis [1 ]
机构
[1] Ctr Invest Cient Yucatan AC, Unidad Recursos Nat, Merida, Mexico
[2] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[3] Univ Nacl Autonoma Mexico, Ctr Invest Geog Ambiental, Lab Anal Espacial, Morelia, Michoacan, Mexico
[4] Univ Edinburgh, Natl Ctr Earth Observat, Edinburgh, Midlothian, Scotland
[5] El Colegio Frontera Sur, Lab Anal Informac Geog & Estadist, Chiapas, Mexico
关键词
Remote sensing; machine learning; LiDAR; error propagation; Sentinel-2; ALOS PALSAR; ALOS-PALSAR; LIDAR; UNCERTAINTY; MAP; DEFORESTATION; DEGRADATION; EMISSIONS; TEXTURE; DRIVERS; CLIMATE;
D O I
10.1080/10106049.2021.1980619
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information on the spatial distribution of forest aboveground biomass (AGB) and its uncertainty is important to evaluate management and conservation policies in tropical forests. However, the scarcity of field data and robust protocols to propagate uncertainty prevent a robust estimation through remote sensing. We upscaled AGB from field data to LiDAR, and to landscape scale using Sentinel-2 and ALOS-PALSAR through machine learning, propagated uncertainty using a Monte Carlo framework and explored the relative contributions of each sensor. Sentinel-2 outperformed ALOS-PALSAR (R-2 = 0.66, vs 0.50), however, the combination provided the best fit (R-2 = 0.70). The combined model explained 49% of the variation comparing against plots within the calibration area, and 17% outside, however, 94% of observations outside calibration area fell within the 95% confidence intervals. Finally, we partitioned the distribution of AGB in different management and conservation categories for evaluating the potential of different strategies for conserving carbon stock.
引用
收藏
页码:7659 / 7680
页数:22
相关论文
共 79 条
  • [1] Predicting Tropical Dry Forest Successional Attributes from Space: Is the Key Hidden in Image Texture?
    Alberto Gallardo-Cruz, J.
    Meave, Jorge A.
    Gonzalez, Edgar J.
    Lebrija-Trejos, Edwin E.
    Romero-Romero, Marco A.
    Perez-Garcia, Eduardo A.
    Gallardo-Cruz, Rodrigo
    Luis Hernandez-Stefanoni, Jose
    Martorell, Carlos
    [J]. PLOS ONE, 2012, 7 (02):
  • [2] Estimation of tropical forest structure from SPOT-5 satellite images
    Angel Castillo-Santiago, Miguel
    Ricker, Martin
    de Jong, Bernardus H. J.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (10) : 2767 - 2782
  • [3] Cloud cover in Landsat observations of the Brazilian Amazon
    Asner, GP
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (18) : 3855 - 3862
  • [4] Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric
    Asner, Gregory P.
    Mascaro, Joseph
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 614 - 624
  • [5] An integrated pan-tropical biomass map using multiple reference datasets
    Avitabile, Valerio
    Herold, Martin
    Heuvelink, Gerard B. M.
    Lewis, Simon L.
    Phillips, Oliver L.
    Asner, Gregory P.
    Armston, John
    Ashton, Peter S.
    Banin, Lindsay
    Bayol, Nicolas
    Berry, Nicholas J.
    Boeckx, Pascal
    de Jong, Bernardus H. J.
    DeVries, Ben
    Girardin, Cecile A. J.
    Kearsley, Elizabeth
    Lindsell, Jeremy A.
    Lopez-Gonzalez, Gabriela
    Lucas, Richard
    Malhi, Yadvinder
    Morel, Alexandra
    Mitchard, Edward T. A.
    Nagy, Laszlo
    Qie, Lan
    Quinones, Marcela J.
    Ryan, Casey M.
    Ferry, Slik J. W.
    Sunderland, Terry
    Laurin, Gaia Vaglio
    Gatti, Roberto Cazzolla
    Valentini, Riccardo
    Verbeeck, Hans
    Wijaya, Arief
    Willcock, Simon
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (04) : 1406 - 1420
  • [6] Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data
    Babcock, Chad
    Finley, Andrew O.
    Cook, Bruce D.
    Weiskittel, Aaron
    Woodall, Christopher W.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 182 : 1 - 12
  • [7] Baccini A, 2013, CARBON MANAG, V4, P591, DOI [10.4155/cmt.13.66, 10.4155/CMT.13.66]
  • [8] BASKERVILLE G L, 1972, Canadian Journal of Forest Research, V2, P49, DOI 10.1139/x72-009
  • [9] Bergstra J., 2011, P 2011 ANN C NEURAL, V24, DOI DOI 10.5555/2986459.2986743
  • [10] Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach
    Bispo, Polyanna da Conceicao
    Rodriguez-Veiga, Pedro
    Zimbres, Barbara
    de Miranda, Sabrina Couto
    Giusti Cezare, Cassio Henrique
    Fleming, Sam
    Baldacchino, Francesca
    Louis, Valentin
    Rains, Dominik
    Garcia, Mariano
    Espirito-Santo, Fernando Del Bon
    Roitman, Iris
    Pacheco-Pascagaza, Ana Maria
    Gou, Yaqing
    Roberts, John
    Barrett, Kirsten
    Ferreira, Laerte Guimaraes
    Shimbo, Julia Zanin
    Alencar, Ane
    Bustamante, Mercedes
    Woodhouse, Iain Hector
    Sano, Edson Eyji
    Ometto, Jean Pierre
    Tansey, Kevin
    Balzter, Heiko
    [J]. REMOTE SENSING, 2020, 12 (17)