Neural Networks Modeling of Dearomatization of Distillate Cuts with Furfural to Produce Lubricants
被引:1
作者:
Alberton, Kese P. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Alberton, Kese P. F.
[1
]
Lima, Anie D.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Pesquisa & Desenvolvimento Leopoldo A Miguez, Cidade Univ, BR-21941915 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Lima, Anie D.
[2
]
Nogueira, Wlamir S.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Pesquisa & Desenvolvimento Leopoldo A Miguez, Cidade Univ, BR-21941915 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Nogueira, Wlamir S.
[2
]
Gomes, Luis C.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Pesquisa & Desenvolvimento Leopoldo A Miguez, Cidade Univ, BR-21941915 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Gomes, Luis C.
[2
]
Melo, Priamo A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Melo, Priamo A.
[1
]
Secchi, Argimiro R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
Secchi, Argimiro R.
[1
]
de Souza, Mauricio B., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Ctr Technol, Chem Engn Dept EQ, Bloco E,Sala 201,Cidade Univ, BR-21941909 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
de Souza, Mauricio B., Jr.
[3
]
机构:
[1] Univ Fed Rio de Janeiro, COPPE, Chem Engn Program, Ctr Technol, Bloco G,Sala 115,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
[2] Ctr Pesquisa & Desenvolvimento Leopoldo A Miguez, Cidade Univ, BR-21941915 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, Ctr Technol, Chem Engn Dept EQ, Bloco E,Sala 201,Cidade Univ, BR-21941909 Rio De Janeiro, Brazil
来源:
26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A
|
2016年
/
38A卷
关键词:
API Group I;
dearomatization;
furfural;
neural networks;
LIQUID-LIQUID EQUILIBRIA;
PLUS;
EXTRACTION;
MIXTURES;
ALKANE;
OILS;
D O I:
10.1016/B978-0-444-63428-3.50046-1
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
An important industrial stage in the solvent route production of API Group I lubricants is the dearomatizaton, a liquid-liquid extraction process. However, dearomatization feed is a complex mixture of components, a disadvantage for thermodynamic modeling approaches. As an alternative, we propose the use of artificial neural networks (ANN) to correlate compositions and crucial properties (e.g., specific gravity, viscosity index and refractive index) of raffinate and extract phases in liquid-liquid extraction. In order to improve the model reliability, data obtained in a pilot plant for dearomatization of three distillate cuts of Arab Light oil using furfural solvent were employed to fit and validate ANN models, evaluating different configurations. The dataset consists of six solvent/oil ratios at six different temperatures, resulting in a number of thirty-six experiments for each distillate cut. The ANN models fit suitably all investigated properties, for both fit and validate data sets, indicating the great potential of this approach as a predicting tool for reducing experimental efforts in characterization assays and also in predicting behaviour in industrial units.