LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems

被引:66
作者
Choi, Han Ho [1 ]
机构
[1] Dongguk Univ, Dept Elect Engn, Seoul 100715, South Korea
关键词
controller; fuzzy system; linear matrix inequality (LMI); observer; sliding mode; switching surface; uncertain nonlinear system;
D O I
10.1109/TFUZZ.2006.890676
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the variable structure system theory, we develop a nonlinear fuzzy observer-controller design method for a class of uncertain nonlinear systems that can be represented by a Takagi-Sugeno fuzzy model. We use a sliding mode observer and a sliding mode controller as the local state observer and the local controller. In terms of linear matrix inequalities (LMls), we derive sufficient conditions for the existence of the fuzzy observer and the fuzzy controller. We also derive LMI conditions for the existence of the fuzzy observer and the fuzzy controller guaranteeing the alpha-stability or generalized H-2/H infinity performance constraints. We show that the observer and the controller can be independently designed, i.e., the separation property holds. Finally, we give simple LMI-based design algorithms, together with an example.
引用
收藏
页码:956 / 971
页数:16
相关论文
共 22 条
[1]   Observers for Takagi-Sugeno fuzzy systems [J].
Bergsten, P ;
Palm, R ;
Driankov, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01) :114-121
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]  
Chen BS, 2000, IEEE T FUZZY SYST, V8, P249, DOI 10.1109/91.855915
[4]   LMI-based sliding-mode observer design method [J].
Choi, HH ;
Ro, KS .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2005, 152 (01) :113-115
[5]   Variable structure output feedback control design for a class of uncertain dynamic systems [J].
Choi, HH .
AUTOMATICA, 2002, 38 (02) :335-341
[6]   VARIABLE STRUCTURE CONTROL OF NONLINEAR MULTIVARIABLE SYSTEMS - A TUTORIAL [J].
DECARLO, RA ;
ZAK, SH ;
MATTHEWS, GP .
PROCEEDINGS OF THE IEEE, 1988, 76 (03) :212-232
[7]   Fuzzy gain scheduling: Controller and observer design based on Lyapunov method and convex optimization [J].
Korba, P ;
Babuska, R ;
Verbruggen, HB ;
Frank, PM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (03) :285-298
[8]  
Lee HJ, 2005, INT J CONTROL AUTOM, V3, P411
[9]   Stabilization of uncertain fuzzy time-delay systems via variable structure control approach [J].
Lin, C ;
Wang, QG ;
Lee, TH .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (06) :787-798
[10]   Improvement on observer-based H∞ control for T-S fuzzy systems [J].
Lin, C ;
Wang, QG ;
Lee, TH .
AUTOMATICA, 2005, 41 (09) :1651-1656