ERDOS-POSA PROPERTY FOR LABELED MINORS: 2-CONNECTED MINORS

被引:1
作者
Bruhn, Henning [1 ]
Joos, Felix [2 ]
Schaudt, Oliver [3 ]
机构
[1] Univ Ulm, Inst Optimierung & OR, D-89081 Ulm, Germany
[2] Heidelberg Univ, Inst Informat, D-69120 Heidelberg, Germany
[3] Rhein Westfal TH Aachen, Lehrstuhl Math Informationsverarbeitung, D-52062 Aachen, Germany
关键词
Erdos-Posa; minors; packing; PACKING CYCLES; GRAPH MINORS; PRESCRIBED VERTICES; A-PATHS;
D O I
10.1137/19M1289340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the 1960s, Erdos and Posa proved that there is a packing-covering duality for cycles in graphs. As part of the graph minor project, Robertson and Seymour greatly extended this: there is such a duality for H-expansions in graphs if and only if H is a planar graph (this includes the previous result for H = K3). We consider vertex labeled graphs and minors and provide such a characterization for 2-connected labeled graphs H. In particular, this generalizes results of Kakimura, Kawarabayashi and Marx [J. Combin. Theory Ser. B, 101 (2011), pp. 378-381] and Huynh, Joos, and Wollan [Combinatorica, 39 (2019), pp. 91--133] up to weaker dependencies of the parameters.
引用
收藏
页码:893 / 914
页数:22
相关论文
共 26 条
  • [1] [Anonymous], 1978, Colloq. Math. Soc. Janos Bolyai
  • [2] Bruhn H, ERDHOS POSA PROPERTY
  • [3] FRAMES, A-PATHS, AND THE ERDOS-POSA PROPERTY
    Bruhn, Henning
    Heinlein, Matthias
    Joos, Felix
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1246 - 1260
  • [4] Long cycles through prescribed vertices have the Erdos-Posa property
    Bruhn, Henning
    Joos, Felix
    Schaudt, Oliver
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (03) : 275 - 284
  • [5] Packing non-zero A-paths in group-labelled graphs
    Chudnovsky, Maria
    Geelen, Jim
    Gerards, Bert
    Goddyn, Luis
    Lohman, Michael
    Seymour, Paul
    [J]. COMBINATORICA, 2006, 26 (05) : 521 - 532
  • [6] Conlon D, 2013, LOND MATH S, V409, P1
  • [7] Dejter I.J., 1987, COMBINATORICS EGER 1, V52, P195
  • [8] Diestel R, 2017, GRAPH THEORY, V173, P2, DOI DOI 10.1007/978-3-662-53622-3
  • [9] Erdos P., 1962, Publ. Math. Debrecen, V9, P3
  • [10] A Unified Erds-Posa Theorem for Constrained Cycles
    Huynh, Tony
    Joos, Felix
    Wollan, Paul
    [J]. COMBINATORICA, 2019, 39 (01) : 91 - 133