Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains*

被引:6
作者
Casas, Eduardo [1 ]
Kunisch, Karl [2 ]
机构
[1] Univ Cantabria, ETSI Ind & Telecomunicac, Dept Matemat Aplicada & Ciencias Comp, Santander 39005, Spain
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
基金
欧盟地平线“2020”;
关键词
Evolution Navier-Stokes equations; weak solutions; uniqueness clasess; sensitivity analysis; asymptotic stability;
D O I
10.1051/cocv/2021058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existence and uniqueness of solutions to the Navier-Stokes equations in dimension two with forces in the space L-q((0, T); W--1,W-p(omega)) for p and q in appropriate parameter ranges are proven. The case of spatially measured-valued forces is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions for any 1 < p, q < infinity.
引用
收藏
页数:25
相关论文
共 31 条
[1]  
Amann H., 2001, REAL ACAD CIENCIAS E, V95, P85
[2]  
Amann H., 1995, Monographs in Mathematics, VI
[3]   ON THE EXISTENCE AND REGULARITY OF THE SOLUTION OF STOKES PROBLEM IN ARBITRARY DIMENSION [J].
AMROUCHE, C ;
GIRAULT, V .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (05) :171-175
[4]   The square root problem for second-order, divergence form operators with mixed boundary conditions on L p [J].
Auscher, Pascal ;
Badr, Nadine ;
Haller-Dintelmann, Robert ;
Rehberg, Joachim .
JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (01) :165-208
[5]   A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem [J].
Boyer, Omid ;
Hong, Tang Sai ;
Pedram, Ali ;
Yusuff, Rosnah Bt Mohd ;
Zulkifli, Norzima .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[6]  
Brezis H, 2011, UNIVERSITEXT, P1
[7]   OPTIMAL CONTROL OF THE TWO-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS WITH MEASURE VALUED CONTROLS [J].
Casas, Eduardo ;
Kunisch, Karl .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) :1328-1354
[8]  
Cattabriga Lamberto, 1961, REND SEMIN MAT U PAD, V31, P308
[9]   On maximal parabolic regularity for non-autonomous parabolic operators [J].
Disser, Karoline ;
ter Elst, A. F. M. ;
Rehberg, Joachim .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :2039-2072
[10]   Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of R2 [J].
Farwig, R. ;
Galdi, G. P. ;
Sohr, H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :564-580